Optimal. Leaf size=18 \[ e^{-4+x-\frac {x}{\log (2 x)}} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 59, normalized size of antiderivative = 3.28, number of steps used = 1, number of rules used = 1, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {2288} \begin {gather*} \frac {e^{-\frac {x}{\log (2 x)}} \left (e^{x-4} x^2-e^{x-4} x^2 \log (2 x)\right )}{\left (\frac {1}{\log ^2(2 x)}-\frac {1}{\log (2 x)}\right ) \log ^2(2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-\frac {x}{\log (2 x)}} \left (e^{-4+x} x^2-e^{-4+x} x^2 \log (2 x)\right )}{\left (\frac {1}{\log ^2(2 x)}-\frac {1}{\log (2 x)}\right ) \log ^2(2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 18, normalized size = 1.00 \begin {gather*} e^{-4+x-\frac {x}{\log (2 x)}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 17, normalized size = 0.94 \begin {gather*} x^{2} e^{\left (x - \frac {x}{\log \left (2 \, x\right )} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.64, size = 28, normalized size = 1.56 \begin {gather*} x^{2} e^{\left (\frac {x \log \left (2 \, x\right ) - x - 4 \, \log \left (2 \, x\right )}{\log \left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 29, normalized size = 1.61
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {x \ln \left (2 x \right )-4 \ln \left (2 x \right )-x}{\ln \left (2 x \right )}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 18, normalized size = 1.00 \begin {gather*} x^{2} e^{\left (x - \frac {x}{\log \relax (2) + \log \relax (x)} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.59, size = 19, normalized size = 1.06 \begin {gather*} x^2\,{\mathrm {e}}^{-\frac {x}{\ln \relax (2)+\ln \relax (x)}}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________