Optimal. Leaf size=34 \[ x-\frac {x+\frac {4 x^2}{225 (-4+2 x)^2}}{x \left (-e^{x^2}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1800+2700 x-3148 x^2+2925 x^3-1350 x^4+225 x^5+e^{2 x^2} \left (-1800+2700 x-1350 x^2+225 x^3\right )+e^{x^2} \left (-2+7199 x-10796 x^2+5398 x^3-900 x^4\right )}{-1800 x^2+2700 x^3-1350 x^4+225 x^5+e^{2 x^2} \left (-1800+2700 x-1350 x^2+225 x^3\right )+e^{x^2} \left (3600 x-5400 x^2+2700 x^3-450 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1800-225 e^{2 x^2} (-2+x)^3-2700 x+3148 x^2-2925 x^3+1350 x^4-225 x^5-e^{x^2} \left (-2+7199 x-10796 x^2+5398 x^3-900 x^4\right )}{225 (2-x)^3 \left (e^{x^2}-x\right )^2} \, dx\\ &=\frac {1}{225} \int \frac {1800-225 e^{2 x^2} (-2+x)^3-2700 x+3148 x^2-2925 x^3+1350 x^4-225 x^5-e^{x^2} \left (-2+7199 x-10796 x^2+5398 x^3-900 x^4\right )}{(2-x)^3 \left (e^{x^2}-x\right )^2} \, dx\\ &=\frac {1}{225} \int \left (225-\frac {2-3599 x+5396 x^2-2698 x^3+450 x^4}{\left (e^{x^2}-x\right ) (-2+x)^3}-\frac {-900+899 x+1575 x^2-1798 x^3+450 x^4}{\left (e^{x^2}-x\right )^2 (-2+x)^2}\right ) \, dx\\ &=x-\frac {1}{225} \int \frac {2-3599 x+5396 x^2-2698 x^3+450 x^4}{\left (e^{x^2}-x\right ) (-2+x)^3} \, dx-\frac {1}{225} \int \frac {-900+899 x+1575 x^2-1798 x^3+450 x^4}{\left (e^{x^2}-x\right )^2 (-2+x)^2} \, dx\\ &=x-\frac {1}{225} \int \left (\frac {2}{e^{x^2}-x}+\frac {4}{\left (e^{x^2}-x\right ) (-2+x)^3}+\frac {9}{\left (e^{x^2}-x\right ) (-2+x)^2}+\frac {8}{\left (e^{x^2}-x\right ) (-2+x)}+\frac {450 x}{e^{x^2}-x}\right ) \, dx-\frac {1}{225} \int \left (-\frac {217}{\left (e^{x^2}-x\right )^2}+\frac {14}{\left (e^{x^2}-x\right )^2 (-2+x)^2}+\frac {23}{\left (e^{x^2}-x\right )^2 (-2+x)}+\frac {2 x}{\left (e^{x^2}-x\right )^2}+\frac {450 x^2}{\left (e^{x^2}-x\right )^2}\right ) \, dx\\ &=x-\frac {2}{225} \int \frac {1}{e^{x^2}-x} \, dx-\frac {2}{225} \int \frac {x}{\left (e^{x^2}-x\right )^2} \, dx-\frac {4}{225} \int \frac {1}{\left (e^{x^2}-x\right ) (-2+x)^3} \, dx-\frac {8}{225} \int \frac {1}{\left (e^{x^2}-x\right ) (-2+x)} \, dx-\frac {1}{25} \int \frac {1}{\left (e^{x^2}-x\right ) (-2+x)^2} \, dx-\frac {14}{225} \int \frac {1}{\left (e^{x^2}-x\right )^2 (-2+x)^2} \, dx-\frac {23}{225} \int \frac {1}{\left (e^{x^2}-x\right )^2 (-2+x)} \, dx+\frac {217}{225} \int \frac {1}{\left (e^{x^2}-x\right )^2} \, dx-2 \int \frac {x}{e^{x^2}-x} \, dx-2 \int \frac {x^2}{\left (e^{x^2}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 37, normalized size = 1.09 \begin {gather*} \frac {1}{225} \left (225 (-2+x)+\frac {900-899 x+225 x^2}{\left (e^{x^2}-x\right ) (-2+x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 68, normalized size = 2.00 \begin {gather*} \frac {225 \, x^{4} - 900 \, x^{3} + 675 \, x^{2} - 225 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{\left (x^{2}\right )} + 899 \, x - 900}{225 \, {\left (x^{3} - 4 \, x^{2} - {\left (x^{2} - 4 \, x + 4\right )} e^{\left (x^{2}\right )} + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 83, normalized size = 2.44 \begin {gather*} \frac {225 \, x^{4} - 225 \, x^{3} e^{\left (x^{2}\right )} - 900 \, x^{3} + 900 \, x^{2} e^{\left (x^{2}\right )} + 675 \, x^{2} - 900 \, x e^{\left (x^{2}\right )} + 899 \, x - 900}{225 \, {\left (x^{3} - x^{2} e^{\left (x^{2}\right )} - 4 \, x^{2} + 4 \, x e^{\left (x^{2}\right )} + 4 \, x - 4 \, e^{\left (x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 35, normalized size = 1.03
method | result | size |
risch | \(x -\frac {225 x^{2}-899 x +900}{225 \left (x^{2}-4 x +4\right ) \left (-{\mathrm e}^{x^{2}}+x \right )}\) | \(35\) |
norman | \(\frac {-4+x^{4}-16 \,{\mathrm e}^{x^{2}}-13 x^{2}+\frac {4499 x}{225}+12 \,{\mathrm e}^{x^{2}} x -x^{3} {\mathrm e}^{x^{2}}}{\left (-{\mathrm e}^{x^{2}}+x \right ) \left (x -2\right )^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 68, normalized size = 2.00 \begin {gather*} \frac {225 \, x^{4} - 900 \, x^{3} + 675 \, x^{2} - 225 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{\left (x^{2}\right )} + 899 \, x - 900}{225 \, {\left (x^{3} - 4 \, x^{2} - {\left (x^{2} - 4 \, x + 4\right )} e^{\left (x^{2}\right )} + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.93, size = 27, normalized size = 0.79 \begin {gather*} x-\frac {x^2-\frac {899\,x}{225}+4}{\left (x-{\mathrm {e}}^{x^2}\right )\,{\left (x-2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 39, normalized size = 1.15 \begin {gather*} x + \frac {225 x^{2} - 899 x + 900}{- 225 x^{3} + 900 x^{2} - 900 x + \left (225 x^{2} - 900 x + 900\right ) e^{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________