Optimal. Leaf size=25 \[ 36+e^{4+\frac {\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \left ((-1+x) \log \left (\frac {1}{x^2}\right )+\left (-2+2 x+(-1+2 x) \log \left (\frac {1}{x^2}\right )\right ) \log (x)\right )}{4 \log ^2\left (\frac {1}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \left ((-1+x) \log \left (\frac {1}{x^2}\right )+\left (-2+2 x+(-1+2 x) \log \left (\frac {1}{x^2}\right )\right ) \log (x)\right )}{\log ^2\left (\frac {1}{x^2}\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) (-1+x)}{\log \left (\frac {1}{x^2}\right )}+\frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \left (-2+2 x-\log \left (\frac {1}{x^2}\right )+2 x \log \left (\frac {1}{x^2}\right )\right ) \log (x)}{\log ^2\left (\frac {1}{x^2}\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) (-1+x)}{\log \left (\frac {1}{x^2}\right )} \, dx+\frac {1}{4} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \left (-2+2 x-\log \left (\frac {1}{x^2}\right )+2 x \log \left (\frac {1}{x^2}\right )\right ) \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx\\ &=\frac {1}{4} \int \frac {e^4 (-1+x) x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}}}{\log \left (\frac {1}{x^2}\right )} \, dx+\frac {1}{4} \int \left (-\frac {2 \exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \log (x)}{\log ^2\left (\frac {1}{x^2}\right )}+\frac {2 \exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) x \log (x)}{\log ^2\left (\frac {1}{x^2}\right )}-\frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \log (x)}{\log \left (\frac {1}{x^2}\right )}+\frac {2 \exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) x \log (x)}{\log \left (\frac {1}{x^2}\right )}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \log (x)}{\log \left (\frac {1}{x^2}\right )} \, dx\right )-\frac {1}{2} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx+\frac {1}{2} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) x \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx+\frac {1}{2} \int \frac {\exp \left (\frac {16 \log \left (\frac {1}{x^2}\right )+\left (-x+x^2\right ) \log (x)}{4 \log \left (\frac {1}{x^2}\right )}\right ) x \log (x)}{\log \left (\frac {1}{x^2}\right )} \, dx+\frac {1}{4} e^4 \int \frac {(-1+x) x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}}}{\log \left (\frac {1}{x^2}\right )} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^4 x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log \left (\frac {1}{x^2}\right )} \, dx\right )+\frac {1}{2} \int \frac {e^4 x^{1+\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx-\frac {1}{2} \int \frac {e^4 x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx+\frac {1}{2} \int \frac {e^4 x^{1+\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log \left (\frac {1}{x^2}\right )} \, dx+\frac {1}{4} e^4 \int \left (\frac {x^{1+\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}}}{\log \left (\frac {1}{x^2}\right )}-\frac {x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}}}{\log \left (\frac {1}{x^2}\right )}\right ) \, dx\\ &=\frac {1}{4} e^4 \int \frac {x^{1+\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}}}{\log \left (\frac {1}{x^2}\right )} \, dx-\frac {1}{4} e^4 \int \frac {x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}}}{\log \left (\frac {1}{x^2}\right )} \, dx-\frac {1}{4} e^4 \int \frac {x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log \left (\frac {1}{x^2}\right )} \, dx+\frac {1}{2} e^4 \int \frac {x^{1+\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx-\frac {1}{2} e^4 \int \frac {x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log ^2\left (\frac {1}{x^2}\right )} \, dx+\frac {1}{2} e^4 \int \frac {x^{1+\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \log (x)}{\log \left (\frac {1}{x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 20, normalized size = 0.80 \begin {gather*} e^4 x^{\frac {(-1+x) x}{4 \log \left (\frac {1}{x^2}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 11, normalized size = 0.44 \begin {gather*} e^{\left (-\frac {1}{8} \, x^{2} + \frac {1}{8} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 27, normalized size = 1.08 \begin {gather*} e^{\left (-\frac {x^{2} \log \relax (x)}{4 \, \log \left (x^{2}\right )} + \frac {x \log \relax (x)}{4 \, \log \left (x^{2}\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.29, size = 77, normalized size = 3.08
method | result | size |
default | \(-\frac {-4 \left (\ln \left (\frac {1}{x^{2}}\right )+2 \ln \relax (x )\right ) {\mathrm e}^{\frac {\ln \relax (x ) \left (x^{2}-x \right )+16 \ln \left (\frac {1}{x^{2}}\right )}{4 \ln \left (\frac {1}{x^{2}}\right )}}+8 \ln \relax (x ) {\mathrm e}^{\frac {\ln \relax (x ) \left (x^{2}-x \right )+16 \ln \left (\frac {1}{x^{2}}\right )}{4 \ln \left (\frac {1}{x^{2}}\right )}}}{4 \ln \left (\frac {1}{x^{2}}\right )}\) | \(77\) |
risch | \({\mathrm e}^{-\frac {8 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-16 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+8 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+x^{2} \ln \relax (x )-x \ln \relax (x )-32 \ln \relax (x )}{2 \left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \ln \relax (x )\right )}}\) | \(125\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 11, normalized size = 0.44 \begin {gather*} e^{\left (-\frac {1}{8} \, x^{2} + \frac {1}{8} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.86, size = 29, normalized size = 1.16 \begin {gather*} {\mathrm {e}}^{\frac {x^2\,\ln \relax (x)}{4\,\ln \left (\frac {1}{x^2}\right )}}\,{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {x\,\ln \relax (x)}{4\,\ln \left (\frac {1}{x^2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 0.88 \begin {gather*} e^{- \frac {\frac {\left (x^{2} - x\right ) \log {\relax (x )}}{4} - 8 \log {\relax (x )}}{2 \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________