Optimal. Leaf size=30 \[ e^{1-x-x^2+\frac {x}{\log \left (\left (e^x+e^{2 x}\right )^2+x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 21.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {x+\left (1-x-x^2\right ) \log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) \left (-x-2 e^{2 x} x-6 e^{3 x} x-4 e^{4 x} x+\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )+\left (e^{3 x} (-2-4 x)+e^{2 x} (-1-2 x)+e^{4 x} (-1-2 x)-x-2 x^2\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )\right )}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\exp \left (\frac {x+\left (1-x-x^2\right ) \log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) x \left (-1+2 e^{2 x}+2 e^{3 x}+4 x\right )}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}+\frac {\exp \left (\frac {x+\left (1-x-x^2\right ) \log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) \left (-4 x+\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )-\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )-2 x \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )\right )}{\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) \, dx\\ &=\int \frac {\exp \left (\frac {x+\left (1-x-x^2\right ) \log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) x \left (-1+2 e^{2 x}+2 e^{3 x}+4 x\right )}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx+\int \frac {\exp \left (\frac {x+\left (1-x-x^2\right ) \log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) \left (-4 x+\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )-\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )-2 x \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )\right )}{\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx\\ &=\int \frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x \left (-1+2 e^{2 x}+2 e^{3 x}+4 x\right )}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx+\int \frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} \left (-4 x+\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )-(1+2 x) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )\right )}{\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx\\ &=\int \left (-\frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}+\frac {2 e^{1+x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}+\frac {2 \exp \left (1+2 x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) x}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}+\frac {4 e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x^2}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) \, dx+\int \left (-e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}}-2 e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x-\frac {4 e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x}{\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}+\frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}}}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) \, dx\\ &=-\left (2 \int e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x \, dx\right )+2 \int \frac {e^{1+x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx+2 \int \frac {\exp \left (1+2 x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}\right ) x}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx-4 \int \frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x}{\log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx+4 \int \frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x^2}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx-\int e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} \, dx-\int \frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} x}{\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right ) \log ^2\left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx+\int \frac {e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}}}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 36, normalized size = 1.20 \begin {gather*} e^{1-x-x^2+\frac {x}{\log \left (e^{2 x}+2 e^{3 x}+e^{4 x}+x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 50, normalized size = 1.67 \begin {gather*} e^{\left (-\frac {{\left (x^{2} + x - 1\right )} \log \left (x + e^{\left (4 \, x\right )} + 2 \, e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )}\right ) - x}{\log \left (x + e^{\left (4 \, x\right )} + 2 \, e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 86, normalized size = 2.87
method | result | size |
risch | \({\mathrm e}^{-\frac {\ln \left ({\mathrm e}^{4 x}+2 \,{\mathrm e}^{3 x}+{\mathrm e}^{2 x}+x \right ) x^{2}+\ln \left ({\mathrm e}^{4 x}+2 \,{\mathrm e}^{3 x}+{\mathrm e}^{2 x}+x \right ) x -\ln \left ({\mathrm e}^{4 x}+2 \,{\mathrm e}^{3 x}+{\mathrm e}^{2 x}+x \right )-x}{\ln \left ({\mathrm e}^{4 x}+2 \,{\mathrm e}^{3 x}+{\mathrm e}^{2 x}+x \right )}}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 35, normalized size = 1.17 \begin {gather*} {\mathrm {e}}^{-x}\,\mathrm {e}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{\frac {x}{\ln \left (x+{\mathrm {e}}^{2\,x}+2\,{\mathrm {e}}^{3\,x}+{\mathrm {e}}^{4\,x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________