Optimal. Leaf size=30 \[ -x+\log \left (\frac {e^{-5+e^{-5+e x}} x}{2 x^2-\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.93, antiderivative size = 26, normalized size of antiderivative = 0.87, number of steps used = 9, number of rules used = 5, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {2561, 6742, 2194, 43, 6684} \begin {gather*} -\log \left (2 x^2-\log (x)\right )-x+e^{e x-5}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2194
Rule 2561
Rule 6684
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+2 x^2+2 x^3-2 e^{-4+e x} x^3+\left (1-x+e^{-4+e x} x\right ) \log (x)}{x \left (-2 x^2+\log (x)\right )} \, dx\\ &=\int \left (e^{-4+e x}+\frac {1-2 x^2-2 x^3-\log (x)+x \log (x)}{x \left (2 x^2-\log (x)\right )}\right ) \, dx\\ &=\int e^{-4+e x} \, dx+\int \frac {1-2 x^2-2 x^3-\log (x)+x \log (x)}{x \left (2 x^2-\log (x)\right )} \, dx\\ &=e^{-5+e x}+\int \left (\frac {1-x}{x}+\frac {1-4 x^2}{x \left (2 x^2-\log (x)\right )}\right ) \, dx\\ &=e^{-5+e x}+\int \frac {1-x}{x} \, dx+\int \frac {1-4 x^2}{x \left (2 x^2-\log (x)\right )} \, dx\\ &=e^{-5+e x}-\log \left (2 x^2-\log (x)\right )+\int \left (-1+\frac {1}{x}\right ) \, dx\\ &=e^{-5+e x}-x+\log (x)-\log \left (2 x^2-\log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 26, normalized size = 0.87 \begin {gather*} e^{-5+e x}-x+\log (x)-\log \left (2 x^2-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 36, normalized size = 1.20 \begin {gather*} -{\left (x e + e \log \left (-2 \, x^{2} + \log \relax (x)\right ) - e \log \relax (x) - e^{\left (x e - 4\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 36, normalized size = 1.20 \begin {gather*} -{\left (x e^{5} + e^{5} \log \left (2 \, x^{2} - \log \relax (x)\right ) - e^{5} \log \relax (x) - e^{\left (x e\right )}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 25, normalized size = 0.83
method | result | size |
risch | \(\ln \relax (x )-x +{\mathrm e}^{x \,{\mathrm e}-5}-\ln \left (-2 x^{2}+\ln \relax (x )\right )\) | \(25\) |
default | \(\ln \relax (x )-x -\ln \left (2 x^{2}-\ln \relax (x )\right )+{\mathrm e}^{x \,{\mathrm e}-5}\) | \(27\) |
norman | \(\ln \relax (x )-x -\ln \left (2 x^{2}-\ln \relax (x )\right )+{\mathrm e}^{x \,{\mathrm e}-5}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 30, normalized size = 1.00 \begin {gather*} -{\left (x e^{5} - e^{\left (x e\right )}\right )} e^{\left (-5\right )} - \log \left (-2 \, x^{2} + \log \relax (x)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.66, size = 24, normalized size = 0.80 \begin {gather*} {\mathrm {e}}^{x\,\mathrm {e}-5}-x+\ln \relax (x)-\ln \left (\ln \relax (x)-2\,x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 22, normalized size = 0.73 \begin {gather*} - x + e^{e x - 5} + \log {\relax (x )} - \log {\left (- 2 x^{2} + \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________