Optimal. Leaf size=30 \[ \frac {1}{2} e^{-5+e^{4 \left (4-e^x\right )}+e^x+2 x-x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.48, antiderivative size = 28, normalized size of antiderivative = 0.93, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12, 6706} \begin {gather*} \frac {1}{2} e^{-x^2+2 x+e^{16-4 e^x}+e^x-5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{-5+e^{16-4 e^x}+e^x+2 x-x^2} \left (2+e^x-4 e^{16-4 e^x+x}-2 x\right ) \, dx\\ &=\frac {1}{2} e^{-5+e^{16-4 e^x}+e^x+2 x-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 28, normalized size = 0.93 \begin {gather*} \frac {1}{2} e^{-5+e^{16-4 e^x}+e^x+2 x-x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 37, normalized size = 1.23 \begin {gather*} e^{\left (-{\left ({\left (x^{2} - 2 \, x + \log \relax (2) + 5\right )} e^{x} - e^{\left (2 \, x\right )} - e^{\left (x - 4 \, e^{x} + 16\right )}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 24, normalized size = 0.80 \begin {gather*} e^{\left (-x^{2} + 2 \, x + e^{x} + e^{\left (-4 \, e^{x} + 16\right )} - \log \relax (2) - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 0.77
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{-4 \,{\mathrm e}^{x}+16}+{\mathrm e}^{x}-5-x^{2}+2 x}}{2}\) | \(23\) |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{-4 \,{\mathrm e}^{x}+16}+{\mathrm e}^{x}-\ln \relax (2)-x^{2}+2 x -5}\) | \(25\) |
default | \({\mathrm e}^{{\mathrm e}^{-4 \,{\mathrm e}^{x}+16}+{\mathrm e}^{x}-\ln \relax (2)-x^{2}+2 x -5}\) | \(25\) |
norman | \({\mathrm e}^{{\mathrm e}^{-4 \,{\mathrm e}^{x}+16}+{\mathrm e}^{x}-\ln \relax (2)-x^{2}+2 x -5}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 22, normalized size = 0.73 \begin {gather*} \frac {1}{2} \, e^{\left (-x^{2} + 2 \, x + e^{x} + e^{\left (-4 \, e^{x} + 16\right )} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 26, normalized size = 0.87 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{{\mathrm {e}}^{16}\,{\mathrm {e}}^{-4\,{\mathrm {e}}^x}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.73 \begin {gather*} \frac {e^{- x^{2} + 2 x + e^{x} + e^{16 - 4 e^{x}} - 5}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________