Optimal. Leaf size=22 \[ e^{-2 x-\frac {2 x}{5-\frac {55 x}{4}}} x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {2 \left (-24 x+55 x^2\right )}{-20+55 x}} \left (160 x-1072 x^2+2090 x^3-1210 x^4\right )}{80-440 x+605 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {2 \left (-24 x+55 x^2\right )}{-20+55 x}} \left (160 x-1072 x^2+2090 x^3-1210 x^4\right )}{5 (-4+11 x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-\frac {2 \left (-24 x+55 x^2\right )}{-20+55 x}} \left (160 x-1072 x^2+2090 x^3-1210 x^4\right )}{(-4+11 x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-\frac {2 x (-24+55 x)}{-20+55 x}} x \left (160-1072 x+2090 x^2-1210 x^3\right )}{(4-11 x)^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {32}{121} e^{-\frac {2 x (-24+55 x)}{-20+55 x}}+10 e^{-\frac {2 x (-24+55 x)}{-20+55 x}} x-10 e^{-\frac {2 x (-24+55 x)}{-20+55 x}} x^2-\frac {512 e^{-\frac {2 x (-24+55 x)}{-20+55 x}}}{121 (-4+11 x)^2}-\frac {256 e^{-\frac {2 x (-24+55 x)}{-20+55 x}}}{121 (-4+11 x)}\right ) \, dx\\ &=-\left (\frac {32}{605} \int e^{-\frac {2 x (-24+55 x)}{-20+55 x}} \, dx\right )-\frac {256}{605} \int \frac {e^{-\frac {2 x (-24+55 x)}{-20+55 x}}}{-4+11 x} \, dx-\frac {512}{605} \int \frac {e^{-\frac {2 x (-24+55 x)}{-20+55 x}}}{(-4+11 x)^2} \, dx+2 \int e^{-\frac {2 x (-24+55 x)}{-20+55 x}} x \, dx-2 \int e^{-\frac {2 x (-24+55 x)}{-20+55 x}} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 21, normalized size = 0.95 \begin {gather*} e^{\frac {2 (24-55 x) x}{-20+55 x}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 23, normalized size = 1.05 \begin {gather*} x^{2} e^{\left (-\frac {2 \, {\left (55 \, x^{2} - 24 \, x\right )}}{5 \, {\left (11 \, x - 4\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 23, normalized size = 1.05 \begin {gather*} x^{2} e^{\left (-\frac {2 \, {\left (55 \, x^{2} - 24 \, x\right )}}{5 \, {\left (11 \, x - 4\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 21, normalized size = 0.95
method | result | size |
risch | \(x^{2} {\mathrm e}^{-\frac {2 x \left (55 x -24\right )}{5 \left (11 x -4\right )}}\) | \(21\) |
gosper | \(x^{2} {\mathrm e}^{-\frac {2 x \left (55 x -24\right )}{5 \left (11 x -4\right )}}\) | \(23\) |
norman | \(\frac {\left (11 x^{3}-4 x^{2}\right ) {\mathrm e}^{-\frac {2 \left (55 x^{2}-24 x \right )}{55 x -20}}}{11 x -4}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 19, normalized size = 0.86 \begin {gather*} x^{2} e^{\left (-2 \, x + \frac {32}{55 \, {\left (11 \, x - 4\right )}} + \frac {8}{55}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.68, size = 28, normalized size = 1.27 \begin {gather*} x^2\,{\mathrm {e}}^{-\frac {22\,x^2}{11\,x-4}}\,{\mathrm {e}}^{\frac {48\,x}{55\,x-20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.77 \begin {gather*} x^{2} e^{- \frac {2 \left (55 x^{2} - 24 x\right )}{55 x - 20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________