Optimal. Leaf size=25 \[ \log \left (4 x^2 (1+x)^2 \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.96, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 4, integrand size = 124, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 6742, 72, 6684} \begin {gather*} 2 \log (x)+2 \log (x+1)+\log \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-4+20 x^2+x (8-5 \log (\log (2)))-3 \log (\log (2))\right )-2 (1+2 x) (4 x-\log (\log (2))) \log \left (x-\frac {1}{4} \log (\log (2))\right )}{x (1+x) (4 x-\log (\log (2))) \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right )} \, dx\\ &=\int \left (\frac {2 (1+2 x)}{x (1+x)}+\frac {-4+4 x-\log (\log (2))}{(4 x-\log (\log (2))) \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right )}\right ) \, dx\\ &=2 \int \frac {1+2 x}{x (1+x)} \, dx+\int \frac {-4+4 x-\log (\log (2))}{(4 x-\log (\log (2))) \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right )} \, dx\\ &=\log \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right )+2 \int \left (\frac {1}{x}+\frac {1}{1+x}\right ) \, dx\\ &=2 \log (x)+2 \log (1+x)+\log \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 26, normalized size = 1.04 \begin {gather*} 2 \log (x)+2 \log (1+x)+\log \left (x-\log \left (x-\frac {1}{4} \log (\log (2))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 22, normalized size = 0.88 \begin {gather*} 2 \, \log \left (x^{2} + x\right ) + \log \left (-x + \log \left (x - \frac {1}{4} \, \log \left (\log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 30, normalized size = 1.20 \begin {gather*} 2 \, \log \left (x + 1\right ) + 2 \, \log \relax (x) + \log \left (-x - 2 \, \log \relax (2) + \log \left (4 \, x - \log \left (\log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 23, normalized size = 0.92
method | result | size |
risch | \(2 \ln \left (x^{2}+x \right )+\ln \left (-x +\ln \left (-\frac {\ln \left (\ln \relax (2)\right )}{4}+x \right )\right )\) | \(23\) |
norman | \(2 \ln \relax (x )+2 \ln \left (x +1\right )+\ln \left (x -\ln \left (-\frac {\ln \left (\ln \relax (2)\right )}{4}+x \right )\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 30, normalized size = 1.20 \begin {gather*} 2 \, \log \left (x + 1\right ) + 2 \, \log \relax (x) + \log \left (-x - 2 \, \log \relax (2) + \log \left (4 \, x - \log \left (\log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.93, size = 22, normalized size = 0.88 \begin {gather*} 2\,\ln \left (x\,\left (x+1\right )\right )+\ln \left (\ln \left (x-\frac {\ln \left (\ln \relax (2)\right )}{4}\right )-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 20, normalized size = 0.80 \begin {gather*} \log {\left (- x + \log {\left (x - \frac {\log {\left (\log {\relax (2 )} \right )}}{4} \right )} \right )} + 2 \log {\left (x^{2} + x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________