Optimal. Leaf size=12 \[ e^{-5-x+\frac {x}{e^{35}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.92, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 2227, 2203} \begin {gather*} e^{-\frac {5 e^{35}-\left (1-e^{35}\right ) x}{e^{35}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2203
Rule 2227
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (1-e^{35}\right ) \int e^{-35+\frac {e^{35} (-5-x)+x}{e^{35}}} \, dx\\ &=\left (1-e^{35}\right ) \int e^{-35+\frac {-5 e^{35}+\left (1-e^{35}\right ) x}{e^{35}}} \, dx\\ &=e^{-\frac {5 e^{35}-\left (1-e^{35}\right ) x}{e^{35}}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 25, normalized size = 2.08 \begin {gather*} -\frac {e^{-40+\left (-1+\frac {1}{e^{35}}\right ) x} \left (-1+e^{35}\right )}{-1+\frac {1}{e^{35}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 17, normalized size = 1.42 \begin {gather*} e^{\left (-{\left ({\left (x + 40\right )} e^{35} - x\right )} e^{\left (-35\right )} + 35\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 15, normalized size = 1.25 \begin {gather*} e^{\left (-{\left ({\left (x + 5\right )} e^{35} - x\right )} e^{\left (-35\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 1.42
method | result | size |
derivativedivides | \({\mathrm e}^{\left (\left (-x -5\right ) {\mathrm e}^{35}+x \right ) {\mathrm e}^{-35}}\) | \(17\) |
default | \({\mathrm e}^{\left (\left (-x -5\right ) {\mathrm e}^{35}+x \right ) {\mathrm e}^{-35}}\) | \(17\) |
norman | \({\mathrm e}^{\left (\left (-x -5\right ) {\mathrm e}^{35}+x \right ) {\mathrm e}^{-35}}\) | \(17\) |
gosper | \({\mathrm e}^{-\left ({\mathrm e}^{35} x +5 \,{\mathrm e}^{35}-x \right ) {\mathrm e}^{-35}}\) | \(20\) |
meijerg | \(-\frac {{\mathrm e}^{30} \left (1-{\mathrm e}^{-x \left ({\mathrm e}^{35}-1\right ) {\mathrm e}^{-35}}\right )}{{\mathrm e}^{35}-1}+\frac {{\mathrm e}^{-5} \left (1-{\mathrm e}^{-x \left ({\mathrm e}^{35}-1\right ) {\mathrm e}^{-35}}\right )}{{\mathrm e}^{35}-1}\) | \(49\) |
risch | \(\frac {{\mathrm e}^{-\left ({\mathrm e}^{35} x +5 \,{\mathrm e}^{35}-x \right ) {\mathrm e}^{-35}} {\mathrm e}^{35}}{{\mathrm e}^{35}-1}-\frac {{\mathrm e}^{-\left ({\mathrm e}^{35} x +5 \,{\mathrm e}^{35}-x \right ) {\mathrm e}^{-35}}}{{\mathrm e}^{35}-1}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 1.25 \begin {gather*} e^{\left (-{\left ({\left (x + 5\right )} e^{35} - x\right )} e^{\left (-35\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 12, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-35}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 1.17 \begin {gather*} e^{\frac {x + \left (- x - 5\right ) e^{35}}{e^{35}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________