Optimal. Leaf size=22 \[ 3+\frac {\log (x \log (2))}{6 e^{20} x^2 (2+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 58, normalized size of antiderivative = 2.64, number of steps used = 14, number of rules used = 9, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {12, 1594, 27, 6742, 44, 2357, 2304, 2314, 31} \begin {gather*} \frac {\log (x \log (2))}{12 e^{20} x^2}+\frac {\log (x)}{48 e^{20}}-\frac {\log (x \log (2))}{24 e^{20} x}-\frac {x \log (x \log (2))}{48 e^{20} (x+2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 44
Rule 1594
Rule 2304
Rule 2314
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2+x+(-4-3 x) \log (x \log (2))}{24 x^3+24 x^4+6 x^5} \, dx}{e^{20}}\\ &=\frac {\int \frac {2+x+(-4-3 x) \log (x \log (2))}{x^3 \left (24+24 x+6 x^2\right )} \, dx}{e^{20}}\\ &=\frac {\int \frac {2+x+(-4-3 x) \log (x \log (2))}{6 x^3 (2+x)^2} \, dx}{e^{20}}\\ &=\frac {\int \frac {2+x+(-4-3 x) \log (x \log (2))}{x^3 (2+x)^2} \, dx}{6 e^{20}}\\ &=\frac {\int \left (\frac {1}{x^3 (2+x)}-\frac {(4+3 x) \log (x \log (2))}{x^3 (2+x)^2}\right ) \, dx}{6 e^{20}}\\ &=\frac {\int \frac {1}{x^3 (2+x)} \, dx}{6 e^{20}}-\frac {\int \frac {(4+3 x) \log (x \log (2))}{x^3 (2+x)^2} \, dx}{6 e^{20}}\\ &=\frac {\int \left (\frac {1}{2 x^3}-\frac {1}{4 x^2}+\frac {1}{8 x}-\frac {1}{8 (2+x)}\right ) \, dx}{6 e^{20}}-\frac {\int \left (\frac {\log (x \log (2))}{x^3}-\frac {\log (x \log (2))}{4 x^2}+\frac {\log (x \log (2))}{4 (2+x)^2}\right ) \, dx}{6 e^{20}}\\ &=-\frac {1}{24 e^{20} x^2}+\frac {1}{24 e^{20} x}+\frac {\log (x)}{48 e^{20}}-\frac {\log (2+x)}{48 e^{20}}+\frac {\int \frac {\log (x \log (2))}{x^2} \, dx}{24 e^{20}}-\frac {\int \frac {\log (x \log (2))}{(2+x)^2} \, dx}{24 e^{20}}-\frac {\int \frac {\log (x \log (2))}{x^3} \, dx}{6 e^{20}}\\ &=\frac {\log (x)}{48 e^{20}}-\frac {\log (2+x)}{48 e^{20}}+\frac {\log (x \log (2))}{12 e^{20} x^2}-\frac {\log (x \log (2))}{24 e^{20} x}-\frac {x \log (x \log (2))}{48 e^{20} (2+x)}+\frac {\int \frac {1}{2+x} \, dx}{48 e^{20}}\\ &=\frac {\log (x)}{48 e^{20}}+\frac {\log (x \log (2))}{12 e^{20} x^2}-\frac {\log (x \log (2))}{24 e^{20} x}-\frac {x \log (x \log (2))}{48 e^{20} (2+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 0.91 \begin {gather*} \frac {\log (x \log (2))}{6 e^{20} x^2 (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 20, normalized size = 0.91 \begin {gather*} \frac {e^{\left (-20\right )} \log \left (x \log \relax (2)\right )}{6 \, {\left (x^{3} + 2 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 23, normalized size = 1.05 \begin {gather*} \frac {1}{24} \, {\left (\frac {1}{x + 2} - \frac {x - 2}{x^{2}}\right )} e^{\left (-20\right )} \log \left (x \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 18, normalized size = 0.82
method | result | size |
risch | \(\frac {\ln \left (x \ln \relax (2)\right ) {\mathrm e}^{-20}}{6 x^{2} \left (2+x \right )}\) | \(18\) |
norman | \(\frac {\ln \left (x \ln \relax (2)\right ) {\mathrm e}^{-20}}{6 x^{2} \left (2+x \right )}\) | \(20\) |
derivativedivides | \(\frac {{\mathrm e}^{-20} \left (\frac {\ln \left (x \ln \relax (2)\right ) \ln \relax (2)}{8}-\frac {\ln \relax (2) \ln \left (x \ln \relax (2)\right )}{4 x}-\frac {\ln \relax (2)^{2} \ln \left (x \ln \relax (2)\right ) x}{8 \left (2 \ln \relax (2)+x \ln \relax (2)\right )}+\frac {\ln \relax (2) \ln \left (x \ln \relax (2)\right )}{2 x^{2}}\right )}{6 \ln \relax (2)}\) | \(68\) |
default | \(\frac {{\mathrm e}^{-20} \left (\frac {\ln \left (x \ln \relax (2)\right ) \ln \relax (2)}{8}-\frac {\ln \relax (2) \ln \left (x \ln \relax (2)\right )}{4 x}-\frac {\ln \relax (2)^{2} \ln \left (x \ln \relax (2)\right ) x}{8 \left (2 \ln \relax (2)+x \ln \relax (2)\right )}+\frac {\ln \relax (2) \ln \left (x \ln \relax (2)\right )}{2 x^{2}}\right )}{6 \ln \relax (2)}\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 85, normalized size = 3.86 \begin {gather*} \frac {1}{48} \, {\left (\frac {2 \, {\left (3 \, x^{2} + 3 \, x - 2\right )}}{x^{3} + 2 \, x^{2}} - \frac {2 \, x^{2} + {\left (x^{3} + 2 \, x^{2} - 8\right )} \log \relax (x) + 2 \, x - 8 \, \log \left (\log \relax (2)\right ) - 4}{x^{3} + 2 \, x^{2}} - \frac {4 \, {\left (x + 1\right )}}{x^{2} + 2 \, x} + \log \relax (x)\right )} e^{\left (-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.94, size = 24, normalized size = 1.09 \begin {gather*} \frac {\ln \left (\ln \relax (2)\right )+\ln \relax (x)}{6\,{\mathrm {e}}^{20}\,x^3+12\,{\mathrm {e}}^{20}\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 1.00 \begin {gather*} \frac {\log {\left (x \log {\relax (2 )} \right )}}{6 x^{3} e^{20} + 12 x^{2} e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________