Optimal. Leaf size=21 \[ 2 e^{\frac {1}{5} x \left (5+2 e^{-3+x}+x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} \exp \left (-6+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \left (e^{2 x} (8+16 x)+e^6 \left (50+40 x+6 x^2\right )+e^{3+x} \left (40+56 x+8 x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \exp \left (-6+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \left (e^{2 x} (8+16 x)+e^6 \left (50+40 x+6 x^2\right )+e^{3+x} \left (40+56 x+8 x^2\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (8 \exp \left (-6+2 x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) (1+2 x)+8 \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \left (5+7 x+x^2\right )+2 \exp \left (\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \left (25+20 x+3 x^2\right )\right ) \, dx\\ &=\frac {2}{5} \int \exp \left (\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \left (25+20 x+3 x^2\right ) \, dx+\frac {8}{5} \int \exp \left (-6+2 x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) (1+2 x) \, dx+\frac {8}{5} \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \left (5+7 x+x^2\right ) \, dx\\ &=\frac {2}{5} \int e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} \left (25+20 x+3 x^2\right ) \, dx+\frac {8}{5} \int \exp \left (\frac {1}{5} \left (-30+35 x+4 e^{-6+2 x} x+10 x^2+x^3+4 e^{-3+x} x (5+x)\right )\right ) (1+2 x) \, dx+\frac {8}{5} \int \left (5 \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right )+7 \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) x+\exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) x^2\right ) \, dx\\ &=\frac {2}{5} \int \left (25 e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}}+20 e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} x+3 e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} x^2\right ) \, dx+\frac {8}{5} \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) x^2 \, dx+\frac {8}{5} \int \left (\exp \left (\frac {1}{5} \left (-30+35 x+4 e^{-6+2 x} x+10 x^2+x^3+4 e^{-3+x} x (5+x)\right )\right )+2 \exp \left (\frac {1}{5} \left (-30+35 x+4 e^{-6+2 x} x+10 x^2+x^3+4 e^{-3+x} x (5+x)\right )\right ) x\right ) \, dx+8 \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \, dx+\frac {56}{5} \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) x \, dx\\ &=\frac {6}{5} \int e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} x^2 \, dx+\frac {8}{5} \int \exp \left (\frac {1}{5} \left (-30+35 x+4 e^{-6+2 x} x+10 x^2+x^3+4 e^{-3+x} x (5+x)\right )\right ) \, dx+\frac {8}{5} \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) x^2 \, dx+\frac {16}{5} \int \exp \left (\frac {1}{5} \left (-30+35 x+4 e^{-6+2 x} x+10 x^2+x^3+4 e^{-3+x} x (5+x)\right )\right ) x \, dx+8 \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) \, dx+8 \int e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} x \, dx+10 \int e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} \, dx+\frac {56}{5} \int \exp \left (-3+x+\frac {4 e^{2 x} x+e^{3+x} \left (20 x+4 x^2\right )+e^6 \left (25 x+10 x^2+x^3\right )}{5 e^6}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 27, normalized size = 1.29 \begin {gather*} 2 e^{\frac {x \left (2 e^x+e^3 (5+x)\right )^2}{5 e^6}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 2.55, size = 48, normalized size = 2.29 \begin {gather*} 2 \, e^{\left (\frac {1}{5} \, {\left ({\left (x^{3} + 10 \, x^{2} + 25 \, x - 30\right )} e^{12} + 4 \, x e^{\left (2 \, x + 6\right )} + 4 \, {\left (x^{2} + 5 \, x\right )} e^{\left (x + 9\right )}\right )} e^{\left (-12\right )} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 42, normalized size = 2.00 \begin {gather*} 2 \, e^{\left (\frac {1}{5} \, x^{3} + \frac {4}{5} \, x^{2} e^{\left (x - 3\right )} + 2 \, x^{2} + \frac {4}{5} \, x e^{\left (2 \, x - 6\right )} + 4 \, x e^{\left (x - 3\right )} + 5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 44, normalized size = 2.10
method | result | size |
risch | \(2 \,{\mathrm e}^{\frac {x \left (x^{2} {\mathrm e}^{6}+4 \,{\mathrm e}^{3+x} x +10 x \,{\mathrm e}^{6}+20 \,{\mathrm e}^{3+x}+25 \,{\mathrm e}^{6}+4 \,{\mathrm e}^{2 x}\right ) {\mathrm e}^{-6}}{5}}\) | \(44\) |
norman | \(2 \,{\mathrm e}^{\frac {\left (4 x \,{\mathrm e}^{2 x}+\left (4 x^{2}+20 x \right ) {\mathrm e}^{3} {\mathrm e}^{x}+\left (x^{3}+10 x^{2}+25 x \right ) {\mathrm e}^{6}\right ) {\mathrm e}^{-6}}{5}}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 42, normalized size = 2.00 \begin {gather*} 2 \, e^{\left (\frac {1}{5} \, x^{3} + \frac {4}{5} \, x^{2} e^{\left (x - 3\right )} + 2 \, x^{2} + \frac {4}{5} \, x e^{\left (2 \, x - 6\right )} + 4 \, x e^{\left (x - 3\right )} + 5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.77, size = 46, normalized size = 2.19 \begin {gather*} 2\,{\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{\frac {x^3}{5}}\,{\mathrm {e}}^{\frac {4\,x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-6}}{5}}\,{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 49, normalized size = 2.33 \begin {gather*} 2 e^{\frac {\frac {4 x e^{2 x}}{5} + \frac {\left (4 x^{2} + 20 x\right ) e^{3} e^{x}}{5} + \frac {\left (x^{3} + 10 x^{2} + 25 x\right ) e^{6}}{5}}{e^{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________