Optimal. Leaf size=24 \[ \left (1+x+\frac {e^{2+x+x^2}+\log (3)}{5 x}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 53, normalized size of antiderivative = 2.21, number of steps used = 10, number of rules used = 4, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {12, 14, 2288, 2334} \begin {gather*} \frac {e^{x^2+x+2} \left (2 x^2 \log (x)+x \log (x)\right )}{5 x^2 (2 x+1)}+\frac {1}{5} \left (5 x+\frac {\log (3)}{x}\right ) \log (x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{2+x+x^2}+5 x+5 x^2+\log (3)+\left (5 x^2+e^{2+x+x^2} \left (-1+x+2 x^2\right )-\log (3)\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{2+x+x^2} \left (1-\log (x)+x \log (x)+2 x^2 \log (x)\right )}{x^2}+\frac {5 x+5 x^2+\log (3)+5 x^2 \log (x)-\log (3) \log (x)}{x^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{2+x+x^2} \left (1-\log (x)+x \log (x)+2 x^2 \log (x)\right )}{x^2} \, dx+\frac {1}{5} \int \frac {5 x+5 x^2+\log (3)+5 x^2 \log (x)-\log (3) \log (x)}{x^2} \, dx\\ &=\frac {e^{2+x+x^2} \left (x \log (x)+2 x^2 \log (x)\right )}{5 x^2 (1+2 x)}+\frac {1}{5} \int \left (\frac {5 x+5 x^2+\log (3)}{x^2}+\frac {\left (5 x^2-\log (3)\right ) \log (x)}{x^2}\right ) \, dx\\ &=\frac {e^{2+x+x^2} \left (x \log (x)+2 x^2 \log (x)\right )}{5 x^2 (1+2 x)}+\frac {1}{5} \int \frac {5 x+5 x^2+\log (3)}{x^2} \, dx+\frac {1}{5} \int \frac {\left (5 x^2-\log (3)\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{5} \left (5 x+\frac {\log (3)}{x}\right ) \log (x)+\frac {e^{2+x+x^2} \left (x \log (x)+2 x^2 \log (x)\right )}{5 x^2 (1+2 x)}-\frac {1}{5} \int \left (5+\frac {\log (3)}{x^2}\right ) \, dx+\frac {1}{5} \int \left (5+\frac {5}{x}+\frac {\log (3)}{x^2}\right ) \, dx\\ &=\log (x)+\frac {1}{5} \left (5 x+\frac {\log (3)}{x}\right ) \log (x)+\frac {e^{2+x+x^2} \left (x \log (x)+2 x^2 \log (x)\right )}{5 x^2 (1+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 28, normalized size = 1.17 \begin {gather*} \frac {\left (e^{2+x+x^2}+5 x+5 x^2+\log (3)\right ) \log (x)}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.68, size = 25, normalized size = 1.04 \begin {gather*} \frac {{\left (5 \, x^{2} + 5 \, x + e^{\left (x^{2} + x + 2\right )} + \log \relax (3)\right )} \log \relax (x)}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 33, normalized size = 1.38 \begin {gather*} \frac {5 \, x^{2} \log \relax (x) + 5 \, x \log \relax (x) + e^{\left (x^{2} + x + 2\right )} \log \relax (x) + \log \relax (3) \log \relax (x)}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 1.08
method | result | size |
risch | \(\frac {\left (5 x^{2}+\ln \relax (3)+{\mathrm e}^{x^{2}+x +2}\right ) \ln \relax (x )}{5 x}+\ln \relax (x )\) | \(26\) |
default | \(\frac {{\mathrm e}^{x^{2}+x +2} \ln \relax (x )}{5 x}+\ln \relax (x )+x \ln \relax (x )+\frac {\ln \relax (3) \ln \relax (x )}{5 x}\) | \(31\) |
norman | \(\frac {x^{2} \ln \relax (x )+x \ln \relax (x )+\frac {\ln \relax (3) \ln \relax (x )}{5}+\frac {\ln \relax (x ) {\mathrm e}^{x^{2}+x +2}}{5}}{x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 49, normalized size = 2.04 \begin {gather*} x - \frac {5 \, x^{2} - {\left (5 \, x^{2} + \log \relax (3)\right )} \log \relax (x) - e^{\left (x^{2} + x + 2\right )} \log \relax (x) - \log \relax (3)}{5 \, x} - \frac {\log \relax (3)}{5 \, x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.08, size = 25, normalized size = 1.04 \begin {gather*} \frac {\ln \relax (x)\,\left (5\,x+{\mathrm {e}}^{x^2+x+2}+\ln \relax (3)+5\,x^2\right )}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 32, normalized size = 1.33 \begin {gather*} \log {\relax (x )} + \frac {\left (5 x^{2} + \log {\relax (3 )}\right ) \log {\relax (x )}}{5 x} + \frac {e^{x^{2} + x + 2} \log {\relax (x )}}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________