Optimal. Leaf size=29 \[ 4+\frac {x}{4}+2 \left (5+x^2 \left (x-e^2 x (1+\log (3))\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 45, normalized size of antiderivative = 1.55, number of steps used = 8, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {6, 12, 30} \begin {gather*} 2 x^4 \left (1-2 e^2+e^4 \left (1+\log ^2(3)\right )\right )-4 e^2 \left (1-e^2\right ) x^4 \log (3)+\frac {x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 30
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{4} \left (1+32 e^4 x^3+\left (32-64 e^2\right ) x^3+\left (-64 e^2 x^3+64 e^4 x^3\right ) \log (3)+32 e^4 x^3 \log ^2(3)\right ) \, dx\\ &=\int \frac {1}{4} \left (1+\left (32-64 e^2+32 e^4\right ) x^3+\left (-64 e^2 x^3+64 e^4 x^3\right ) \log (3)+32 e^4 x^3 \log ^2(3)\right ) \, dx\\ &=\int \frac {1}{4} \left (1+\left (-64 e^2 x^3+64 e^4 x^3\right ) \log (3)+x^3 \left (32-64 e^2+32 e^4+32 e^4 \log ^2(3)\right )\right ) \, dx\\ &=\frac {1}{4} \int \left (1+\left (-64 e^2 x^3+64 e^4 x^3\right ) \log (3)+x^3 \left (32-64 e^2+32 e^4+32 e^4 \log ^2(3)\right )\right ) \, dx\\ &=\frac {x}{4}+2 x^4 \left (1-2 e^2+e^4 \left (1+\log ^2(3)\right )\right )+\frac {1}{4} \log (3) \int \left (-64 e^2 x^3+64 e^4 x^3\right ) \, dx\\ &=\frac {x}{4}+2 x^4 \left (1-2 e^2+e^4 \left (1+\log ^2(3)\right )\right )+\frac {1}{4} \log (3) \int \left (-64 e^2+64 e^4\right ) x^3 \, dx\\ &=\frac {x}{4}+2 x^4 \left (1-2 e^2+e^4 \left (1+\log ^2(3)\right )\right )-\left (16 e^2 \left (1-e^2\right ) \log (3)\right ) \int x^3 \, dx\\ &=\frac {x}{4}-4 e^2 \left (1-e^2\right ) x^4 \log (3)+2 x^4 \left (1-2 e^2+e^4 \left (1+\log ^2(3)\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.79 \begin {gather*} \frac {x}{4}+2 x^4 \left (-1+e^2 (1+\log (3))\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 52, normalized size = 1.79 \begin {gather*} 2 \, x^{4} e^{4} \log \relax (3)^{2} + 2 \, x^{4} e^{4} - 4 \, x^{4} e^{2} + 2 \, x^{4} + 4 \, {\left (x^{4} e^{4} - x^{4} e^{2}\right )} \log \relax (3) + \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 52, normalized size = 1.79 \begin {gather*} 2 \, x^{4} e^{4} \log \relax (3)^{2} + 2 \, x^{4} e^{4} - 4 \, x^{4} e^{2} + 2 \, x^{4} + 4 \, {\left (x^{4} e^{4} - x^{4} e^{2}\right )} \log \relax (3) + \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 45, normalized size = 1.55
method | result | size |
norman | \(\left (2 \,{\mathrm e}^{4} \ln \relax (3)^{2}+4 \,{\mathrm e}^{4} \ln \relax (3)+2 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{2} \ln \relax (3)-4 \,{\mathrm e}^{2}+2\right ) x^{4}+\frac {x}{4}\) | \(45\) |
risch | \(2 x^{4} {\mathrm e}^{4} \ln \relax (3)^{2}+4 \ln \relax (3) x^{4} {\mathrm e}^{4}-4 \ln \relax (3) x^{4} {\mathrm e}^{2}+2 x^{4} {\mathrm e}^{4}-4 x^{4} {\mathrm e}^{2}+2 x^{4}+\frac {x}{4}\) | \(55\) |
gosper | \(\frac {x \left (8 x^{3} {\mathrm e}^{4} \ln \relax (3)^{2}+16 \,{\mathrm e}^{4} \ln \relax (3) x^{3}+8 x^{3} {\mathrm e}^{4}-16 \,{\mathrm e}^{2} \ln \relax (3) x^{3}-16 x^{3} {\mathrm e}^{2}+8 x^{3}+1\right )}{4}\) | \(60\) |
default | \(2 x^{4} {\mathrm e}^{4} \ln \relax (3)^{2}+\frac {\ln \relax (3) \left (16 x^{4} {\mathrm e}^{4}-16 x^{4} {\mathrm e}^{2}\right )}{4}+2 x^{4} {\mathrm e}^{4}-4 x^{4} {\mathrm e}^{2}+2 x^{4}+\frac {x}{4}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 52, normalized size = 1.79 \begin {gather*} 2 \, x^{4} e^{4} \log \relax (3)^{2} + 2 \, x^{4} e^{4} - 4 \, x^{4} e^{2} + 2 \, x^{4} + 4 \, {\left (x^{4} e^{4} - x^{4} e^{2}\right )} \log \relax (3) + \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.56, size = 39, normalized size = 1.34 \begin {gather*} \left (2\,{\mathrm {e}}^4-4\,{\mathrm {e}}^2+2\,{\mathrm {e}}^4\,{\ln \relax (3)}^2-\frac {\ln \relax (3)\,\left (64\,{\mathrm {e}}^2-64\,{\mathrm {e}}^4\right )}{16}+2\right )\,x^4+\frac {x}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 44, normalized size = 1.52 \begin {gather*} x^{4} \left (- 4 e^{2} \log {\relax (3 )} - 4 e^{2} + 2 + 2 e^{4} + 2 e^{4} \log {\relax (3 )}^{2} + 4 e^{4} \log {\relax (3 )}\right ) + \frac {x}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________