Optimal. Leaf size=25 \[ 9+x+\left (e^{2 x}-\frac {4}{1+x}\right ) \left (x+\frac {2}{\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 55, normalized size of antiderivative = 2.20, number of steps used = 8, number of rules used = 6, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 27, 6742, 2176, 2194, 683} \begin {gather*} x+\frac {e^{2 x} (x \log (16)+4+\log (4))}{2 \log (4)}-\frac {e^{2 x} \log (16)}{4 \log (4)}-\frac {2 (4-\log (16))}{(x+1) \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 683
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {8+\left (-3+2 x+x^2\right ) \log (4)+e^{2 x} \left (4+8 x+4 x^2+\left (1+4 x+5 x^2+2 x^3\right ) \log (4)\right )}{1+2 x+x^2} \, dx}{\log (4)}\\ &=\frac {\int \frac {8+\left (-3+2 x+x^2\right ) \log (4)+e^{2 x} \left (4+8 x+4 x^2+\left (1+4 x+5 x^2+2 x^3\right ) \log (4)\right )}{(1+x)^2} \, dx}{\log (4)}\\ &=\frac {\int \left (e^{2 x} (4+\log (4)+x \log (16))+\frac {8-3 \log (4)+x^2 \log (4)+x \log (16)}{(1+x)^2}\right ) \, dx}{\log (4)}\\ &=\frac {\int e^{2 x} (4+\log (4)+x \log (16)) \, dx}{\log (4)}+\frac {\int \frac {8-3 \log (4)+x^2 \log (4)+x \log (16)}{(1+x)^2} \, dx}{\log (4)}\\ &=\frac {e^{2 x} (4+\log (4)+x \log (16))}{2 \log (4)}+\frac {\int \left (\log (4)-\frac {2 (-4+\log (16))}{(1+x)^2}\right ) \, dx}{\log (4)}-\frac {\log (16) \int e^{2 x} \, dx}{2 \log (4)}\\ &=x-\frac {2 (4-\log (16))}{(1+x) \log (4)}-\frac {e^{2 x} \log (16)}{4 \log (4)}+\frac {e^{2 x} (4+\log (4)+x \log (16))}{2 \log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 35, normalized size = 1.40 \begin {gather*} \frac {x \log (4)+\frac {1}{2} e^{2 x} (4+x \log (16))+\frac {-8+\log (256)}{1+x}}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 37, normalized size = 1.48 \begin {gather*} \frac {{\left ({\left (x^{2} + x\right )} \log \relax (2) + x + 1\right )} e^{\left (2 \, x\right )} + {\left (x^{2} + x + 4\right )} \log \relax (2) - 4}{{\left (x + 1\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 54, normalized size = 2.16 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} \log \relax (2) + x^{2} \log \relax (2) + x e^{\left (2 \, x\right )} \log \relax (2) + x e^{\left (2 \, x\right )} + x \log \relax (2) + e^{\left (2 \, x\right )} + 4 \, \log \relax (2) - 4}{{\left (x + 1\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 38, normalized size = 1.52
method | result | size |
risch | \(x -\frac {4}{\ln \relax (2) \left (x +1\right )}+\frac {4}{x +1}+\frac {\left (2+2 x \ln \relax (2)\right ) {\mathrm e}^{2 x}}{2 \ln \relax (2)}\) | \(38\) |
default | \(\frac {-\frac {8}{x +1}+\frac {8 \ln \relax (2)}{x +1}+2 x \ln \relax (2)+2 \,{\mathrm e}^{2 x}+2 x \ln \relax (2) {\mathrm e}^{2 x}}{2 \ln \relax (2)}\) | \(44\) |
norman | \(\frac {x^{2}+{\mathrm e}^{2 x} x^{2}+\frac {{\mathrm e}^{2 x}}{\ln \relax (2)}+\frac {\left (1+\ln \relax (2)\right ) x \,{\mathrm e}^{2 x}}{\ln \relax (2)}+\frac {3 \ln \relax (2)-4}{\ln \relax (2)}}{x +1}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (x - \frac {1}{x + 1} - 2 \, \log \left (x + 1\right )\right )} \log \relax (2) + 2 \, {\left (\frac {1}{x + 1} + \log \left (x + 1\right )\right )} \log \relax (2) - \frac {e^{\left (-2\right )} E_{2}\left (-2 \, x - 2\right ) \log \relax (2)}{x + 1} + \frac {{\left (x^{3} \log \relax (2) + x^{2} {\left (2 \, \log \relax (2) + 1\right )} + x {\left (\log \relax (2) + 2\right )}\right )} e^{\left (2 \, x\right )}}{x^{2} + 2 \, x + 1} - \frac {2 \, e^{\left (-2\right )} E_{2}\left (-2 \, x - 2\right )}{x + 1} - \frac {e^{\left (2 \, x\right )} \log \relax (2)}{2 \, {\left (x^{2} + 2 \, x + 1\right )}} + \frac {e^{\left (-2\right )} E_{3}\left (-2 \, x - 2\right ) \log \relax (2)}{{\left (x + 1\right )}^{2}} + \frac {2 \, e^{\left (-2\right )} E_{3}\left (-2 \, x - 2\right )}{{\left (x + 1\right )}^{2}} + \frac {3 \, \log \relax (2)}{x + 1} - \frac {4}{x + 1}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 39, normalized size = 1.56 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}+x\,\ln \relax (2)+x\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)}{\ln \relax (2)}+\frac {\ln \relax (2)+\ln \relax (8)-4}{\ln \relax (2)\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 31, normalized size = 1.24 \begin {gather*} x + \frac {\left (x \log {\relax (2 )} + 1\right ) e^{2 x}}{\log {\relax (2 )}} + \frac {-4 + 4 \log {\relax (2 )}}{x \log {\relax (2 )} + \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________