Optimal. Leaf size=25 \[ \frac {15 x}{\log \left (-2+e^{-\frac {2 (2+x)}{x}} (-4+x)-x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60 x^2+15 x^3+e^{\frac {-4-2 x+x \log (-4+x)}{x}} \left (240-60 x-15 x^2\right )+\left (120 x+30 x^2-15 x^3+e^{\frac {-4-2 x+x \log (-4+x)}{x}} \left (-60 x+15 x^2\right )\right ) \log \left (-2+e^{\frac {-4-2 x+x \log (-4+x)}{x}}-x\right )}{\left (8 x+2 x^2-x^3+e^{\frac {-4-2 x+x \log (-4+x)}{x}} \left (-4 x+x^2\right )\right ) \log ^2\left (-2+e^{\frac {-4-2 x+x \log (-4+x)}{x}}-x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 \left (-16+4 x-\left (-1+e^{2+\frac {4}{x}}\right ) x^2+x \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )\right )}{x \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ &=15 \int \frac {-16+4 x-\left (-1+e^{2+\frac {4}{x}}\right ) x^2+x \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}{x \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ &=15 \int \left (\frac {2 \left (-16-4 x+5 x^2\right )}{x (2+x) \left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}+\frac {-x+2 \log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )+x \log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}{(2+x) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}\right ) \, dx\\ &=15 \int \frac {-x+2 \log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )+x \log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}{(2+x) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx+30 \int \frac {-16-4 x+5 x^2}{x (2+x) \left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ &=15 \int \frac {-\frac {x}{2+x}+\log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}{\log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx+30 \int \frac {-16-4 x+5 x^2}{x (2+x) \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ &=15 \int \left (-\frac {x}{(2+x) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}+\frac {1}{\log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}\right ) \, dx+30 \int \left (\frac {5}{\left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}-\frac {8}{x \left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}-\frac {6}{(2+x) \left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}\right ) \, dx\\ &=-\left (15 \int \frac {x}{(2+x) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\right )+15 \int \frac {1}{\log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx+150 \int \frac {1}{\left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx-180 \int \frac {1}{(2+x) \left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx-240 \int \frac {1}{x \left (4+2 e^{2+\frac {4}{x}}-x+e^{2+\frac {4}{x}} x\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ &=-\left (15 \int \left (\frac {1}{\log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}-\frac {2}{(2+x) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )}\right ) \, dx\right )+15 \int \frac {1}{\log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx+150 \int \frac {1}{\left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx-180 \int \frac {1}{(2+x) \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx-240 \int \frac {1}{x \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ &=-\left (15 \int \frac {1}{\log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\right )+15 \int \frac {1}{\log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx+30 \int \frac {1}{(2+x) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx+150 \int \frac {1}{\left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx-180 \int \frac {1}{(2+x) \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx-240 \int \frac {1}{x \left (4-x+e^{2+\frac {4}{x}} (2+x)\right ) \log ^2\left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 0.96 \begin {gather*} \frac {15 x}{\log \left (-2+e^{-2-\frac {4}{x}} (-4+x)-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.29, size = 27, normalized size = 1.08 \begin {gather*} \frac {15 \, x}{\log \left (-x + e^{\left (\frac {x \log \left (x - 4\right ) - 2 \, x - 4}{x}\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 41, normalized size = 1.64 \begin {gather*} \frac {15 \, x^{2}}{x \log \left (-x e^{\left (\frac {2 \, {\left (x + 2\right )}}{x}\right )} + x - 2 \, e^{\left (\frac {2 \, {\left (x + 2\right )}}{x}\right )} - 4\right ) - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
risch | \(\frac {15 x}{\ln \left (\left (x -4\right ) {\mathrm e}^{-\frac {2 \left (2+x \right )}{x}}-x -2\right )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 35, normalized size = 1.40 \begin {gather*} \frac {15 \, x^{2}}{x \log \left (-{\left (x e^{2} + 2 \, e^{2}\right )} e^{\frac {4}{x}} + x - 4\right ) - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int -\frac {\ln \left ({\mathrm {e}}^{-\frac {2\,x-x\,\ln \left (x-4\right )+4}{x}}-x-2\right )\,\left (120\,x-{\mathrm {e}}^{-\frac {2\,x-x\,\ln \left (x-4\right )+4}{x}}\,\left (60\,x-15\,x^2\right )+30\,x^2-15\,x^3\right )-{\mathrm {e}}^{-\frac {2\,x-x\,\ln \left (x-4\right )+4}{x}}\,\left (15\,x^2+60\,x-240\right )-60\,x^2+15\,x^3}{{\ln \left ({\mathrm {e}}^{-\frac {2\,x-x\,\ln \left (x-4\right )+4}{x}}-x-2\right )}^2\,\left (8\,x-{\mathrm {e}}^{-\frac {2\,x-x\,\ln \left (x-4\right )+4}{x}}\,\left (4\,x-x^2\right )+2\,x^2-x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.48, size = 22, normalized size = 0.88 \begin {gather*} \frac {15 x}{\log {\left (- x + e^{\frac {x \log {\left (x - 4 \right )} - 2 x - 4}{x}} - 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________