Optimal. Leaf size=26 \[ \left (x^2-x \log (4)+\log \left (\frac {x}{\log (3)}+\log \left (\log \left (\frac {3}{x}\right )\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 205, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6688, 12, 6686} \begin {gather*} \left (x (x-\log (4))+\log \left (\frac {x}{\log (3)}+\log \left (\log \left (\frac {3}{x}\right )\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (\log (3)-x \log \left (\frac {3}{x}\right ) \left (1+2 x^2-x \log (4)+(-\log (3) \log (4)+x \log (9)) \log \left (\log \left (\frac {3}{x}\right )\right )\right )\right ) \left (-x (x-\log (4))-\log \left (\frac {x}{\log (3)}+\log \left (\log \left (\frac {3}{x}\right )\right )\right )\right )}{x \log \left (\frac {3}{x}\right ) \left (x+\log (3) \log \left (\log \left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=2 \int \frac {\left (\log (3)-x \log \left (\frac {3}{x}\right ) \left (1+2 x^2-x \log (4)+(-\log (3) \log (4)+x \log (9)) \log \left (\log \left (\frac {3}{x}\right )\right )\right )\right ) \left (-x (x-\log (4))-\log \left (\frac {x}{\log (3)}+\log \left (\log \left (\frac {3}{x}\right )\right )\right )\right )}{x \log \left (\frac {3}{x}\right ) \left (x+\log (3) \log \left (\log \left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\left (x (x-\log (4))+\log \left (\frac {x}{\log (3)}+\log \left (\log \left (\frac {3}{x}\right )\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.62, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-2 x^2 \log (3)+2 x \log (3) \log (4)+\left (2 x^3+4 x^5+\left (-2 x^2-6 x^4\right ) \log (4)+2 x^3 \log ^2(4)\right ) \log \left (\frac {3}{x}\right )+\left (4 x^4 \log (3)-6 x^3 \log (3) \log (4)+2 x^2 \log (3) \log ^2(4)\right ) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right )+\left (-2 \log (3)+\left (2 x+4 x^3-2 x^2 \log (4)\right ) \log \left (\frac {3}{x}\right )+\left (4 x^2 \log (3)-2 x \log (3) \log (4)\right ) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right )\right ) \log \left (\frac {x+\log (3) \log \left (\log \left (\frac {3}{x}\right )\right )}{\log (3)}\right )}{x^2 \log \left (\frac {3}{x}\right )+x \log (3) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.49, size = 69, normalized size = 2.65 \begin {gather*} x^{4} - 4 \, x^{3} \log \relax (2) + 4 \, x^{2} \log \relax (2)^{2} + 2 \, {\left (x^{2} - 2 \, x \log \relax (2)\right )} \log \left (\frac {\log \relax (3) \log \left (\log \left (\frac {3}{x}\right )\right ) + x}{\log \relax (3)}\right ) + \log \left (\frac {\log \relax (3) \log \left (\log \left (\frac {3}{x}\right )\right ) + x}{\log \relax (3)}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (x^{2} \log \relax (3) - 2 \, x \log \relax (3) \log \relax (2) - 2 \, {\left (x^{4} \log \relax (3) - 3 \, x^{3} \log \relax (3) \log \relax (2) + 2 \, x^{2} \log \relax (3) \log \relax (2)^{2}\right )} \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right ) - {\left (2 \, {\left (x^{2} \log \relax (3) - x \log \relax (3) \log \relax (2)\right )} \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right ) + {\left (2 \, x^{3} - 2 \, x^{2} \log \relax (2) + x\right )} \log \left (\frac {3}{x}\right ) - \log \relax (3)\right )} \log \left (\frac {\log \relax (3) \log \left (\log \left (\frac {3}{x}\right )\right ) + x}{\log \relax (3)}\right ) - {\left (2 \, x^{5} + 4 \, x^{3} \log \relax (2)^{2} + x^{3} - 2 \, {\left (3 \, x^{4} + x^{2}\right )} \log \relax (2)\right )} \log \left (\frac {3}{x}\right )\right )}}{x \log \relax (3) \log \left (\frac {3}{x}\right ) \log \left (\log \left (\frac {3}{x}\right )\right ) + x^{2} \log \left (\frac {3}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-4 x \ln \relax (2) \ln \relax (3)+4 x^{2} \ln \relax (3)\right ) \ln \left (\frac {3}{x}\right ) \ln \left (\ln \left (\frac {3}{x}\right )\right )+\left (-4 x^{2} \ln \relax (2)+4 x^{3}+2 x \right ) \ln \left (\frac {3}{x}\right )-2 \ln \relax (3)\right ) \ln \left (\frac {\ln \relax (3) \ln \left (\ln \left (\frac {3}{x}\right )\right )+x}{\ln \relax (3)}\right )+\left (8 x^{2} \ln \relax (3) \ln \relax (2)^{2}-12 x^{3} \ln \relax (3) \ln \relax (2)+4 x^{4} \ln \relax (3)\right ) \ln \left (\frac {3}{x}\right ) \ln \left (\ln \left (\frac {3}{x}\right )\right )+\left (8 x^{3} \ln \relax (2)^{2}+2 \left (-6 x^{4}-2 x^{2}\right ) \ln \relax (2)+4 x^{5}+2 x^{3}\right ) \ln \left (\frac {3}{x}\right )+4 x \ln \relax (2) \ln \relax (3)-2 x^{2} \ln \relax (3)}{x \ln \relax (3) \ln \left (\frac {3}{x}\right ) \ln \left (\ln \left (\frac {3}{x}\right )\right )+x^{2} \ln \left (\frac {3}{x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 82, normalized size = 3.15 \begin {gather*} x^{4} - 4 \, x^{3} \log \relax (2) + 2 \, {\left (2 \, \log \relax (2)^{2} - \log \left (\log \relax (3)\right )\right )} x^{2} + 4 \, x \log \relax (2) \log \left (\log \relax (3)\right ) + 2 \, {\left (x^{2} - 2 \, x \log \relax (2) - \log \left (\log \relax (3)\right )\right )} \log \left (\log \relax (3) \log \left (\log \relax (3) - \log \relax (x)\right ) + x\right ) + \log \left (\log \relax (3) \log \left (\log \relax (3) - \log \relax (x)\right ) + x\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (\frac {3}{x}\right )\,\left (8\,x^3\,{\ln \relax (2)}^2-2\,\ln \relax (2)\,\left (6\,x^4+2\,x^2\right )+2\,x^3+4\,x^5\right )-2\,x^2\,\ln \relax (3)+\ln \left (\frac {x+\ln \left (\ln \left (\frac {3}{x}\right )\right )\,\ln \relax (3)}{\ln \relax (3)}\right )\,\left (\ln \left (\frac {3}{x}\right )\,\left (4\,x^3-4\,\ln \relax (2)\,x^2+2\,x\right )-2\,\ln \relax (3)+\ln \left (\ln \left (\frac {3}{x}\right )\right )\,\ln \left (\frac {3}{x}\right )\,\left (4\,x^2\,\ln \relax (3)-4\,x\,\ln \relax (2)\,\ln \relax (3)\right )\right )+\ln \left (\ln \left (\frac {3}{x}\right )\right )\,\ln \left (\frac {3}{x}\right )\,\left (4\,\ln \relax (3)\,x^4-12\,\ln \relax (2)\,\ln \relax (3)\,x^3+8\,{\ln \relax (2)}^2\,\ln \relax (3)\,x^2\right )+4\,x\,\ln \relax (2)\,\ln \relax (3)}{x^2\,\ln \left (\frac {3}{x}\right )+x\,\ln \left (\ln \left (\frac {3}{x}\right )\right )\,\ln \relax (3)\,\ln \left (\frac {3}{x}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.98, size = 68, normalized size = 2.62 \begin {gather*} x^{4} - 4 x^{3} \log {\relax (2 )} + 4 x^{2} \log {\relax (2 )}^{2} + \left (2 x^{2} - 4 x \log {\relax (2 )}\right ) \log {\left (\frac {x + \log {\relax (3 )} \log {\left (\log {\left (\frac {3}{x} \right )} \right )}}{\log {\relax (3 )}} \right )} + \log {\left (\frac {x + \log {\relax (3 )} \log {\left (\log {\left (\frac {3}{x} \right )} \right )}}{\log {\relax (3 )}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________