Optimal. Leaf size=20 \[ 3 \left (e^{4-\frac {x}{15}}-e^{-4+x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.55, number of steps used = 5, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 2194, 2176} \begin {gather*} -3 e^{x-4} (x+1)+3 e^{\frac {60-x}{15}}+3 e^{x-4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (-e^{\frac {60-x}{15}}+e^{-4+x} (-15-15 x)\right ) \, dx\\ &=-\left (\frac {1}{5} \int e^{\frac {60-x}{15}} \, dx\right )+\frac {1}{5} \int e^{-4+x} (-15-15 x) \, dx\\ &=3 e^{\frac {60-x}{15}}-3 e^{-4+x} (1+x)+3 \int e^{-4+x} \, dx\\ &=3 e^{\frac {60-x}{15}}+3 e^{-4+x}-3 e^{-4+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 1.00 \begin {gather*} 3 e^{4-\frac {x}{15}}-3 e^{-4+x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 19, normalized size = 0.95 \begin {gather*} -3 \, {\left (x e^{56} - e^{\left (-\frac {16}{15} \, x + 64\right )}\right )} e^{\left (x - 60\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 16, normalized size = 0.80 \begin {gather*} -3 \, x e^{\left (x - 4\right )} + 3 \, e^{\left (-\frac {1}{15} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.85
method | result | size |
risch | \(3 \,{\mathrm e}^{-\frac {x}{15}+4}-3 x \,{\mathrm e}^{x -4}\) | \(17\) |
default | \(-3 \,{\mathrm e}^{x -4} \left (x -4\right )-12 \,{\mathrm e}^{x -4}+3 \,{\mathrm e}^{-\frac {x}{15}+4}\) | \(25\) |
meijerg | \(3 \,{\mathrm e}^{-4} \left (1-{\mathrm e}^{x}\right )-3 \,{\mathrm e}^{-4} \left (1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}\right )-3 \,{\mathrm e}^{4} \left (1-{\mathrm e}^{-\frac {x}{15}}\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 24, normalized size = 1.20 \begin {gather*} -3 \, {\left (x - 1\right )} e^{\left (x - 4\right )} - 3 \, e^{\left (x - 4\right )} + 3 \, e^{\left (-\frac {1}{15} \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.79, size = 16, normalized size = 0.80 \begin {gather*} 3\,{\mathrm {e}}^{4-\frac {x}{15}}-3\,x\,{\mathrm {e}}^{x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 19, normalized size = 0.95 \begin {gather*} - 3 x e^{56} e^{x - 60} + 3 e^{4 - \frac {x}{15}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________