Optimal. Leaf size=23 \[ 4-\frac {4 x^2 \log (x)}{3-x^2-x^4} \]
________________________________________________________________________________________
Rubi [B] time = 1.07, antiderivative size = 230, normalized size of antiderivative = 10.00, number of steps used = 37, number of rules used = 11, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.224, Rules used = {6688, 12, 6742, 1107, 618, 206, 2357, 2335, 260, 2337, 2391} \begin {gather*} -\frac {96 x^2 \log (x)}{13 \left (1-\sqrt {13}\right ) \left (2 x^2-\sqrt {13}+1\right )}-\frac {8 x^2 \log (x)}{13 \left (2 x^2-\sqrt {13}+1\right )}-\frac {96 x^2 \log (x)}{13 \left (1+\sqrt {13}\right ) \left (2 x^2+\sqrt {13}+1\right )}-\frac {8 x^2 \log (x)}{13 \left (2 x^2+\sqrt {13}+1\right )}+\frac {24 \log \left (2 x^2-\sqrt {13}+1\right )}{13 \left (1-\sqrt {13}\right )}+\frac {2}{13} \log \left (2 x^2-\sqrt {13}+1\right )+\frac {24 \log \left (2 x^2+\sqrt {13}+1\right )}{13 \left (1+\sqrt {13}\right )}+\frac {2}{13} \log \left (2 x^2+\sqrt {13}+1\right )-\frac {4 \tanh ^{-1}\left (\frac {2 x^2+1}{\sqrt {13}}\right )}{\sqrt {13}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 206
Rule 260
Rule 618
Rule 1107
Rule 2335
Rule 2337
Rule 2357
Rule 2391
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (-3+x^2+x^4-2 \left (3+x^4\right ) \log (x)\right )}{\left (3-x^2-x^4\right )^2} \, dx\\ &=4 \int \frac {x \left (-3+x^2+x^4-2 \left (3+x^4\right ) \log (x)\right )}{\left (3-x^2-x^4\right )^2} \, dx\\ &=4 \int \left (\frac {x}{-3+x^2+x^4}-\frac {2 x \left (3+x^4\right ) \log (x)}{\left (-3+x^2+x^4\right )^2}\right ) \, dx\\ &=4 \int \frac {x}{-3+x^2+x^4} \, dx-8 \int \frac {x \left (3+x^4\right ) \log (x)}{\left (-3+x^2+x^4\right )^2} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {1}{-3+x+x^2} \, dx,x,x^2\right )-8 \int \left (-\frac {x \left (-6+x^2\right ) \log (x)}{\left (-3+x^2+x^4\right )^2}+\frac {x \log (x)}{-3+x^2+x^4}\right ) \, dx\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {1}{13-x^2} \, dx,x,1+2 x^2\right )\right )+8 \int \frac {x \left (-6+x^2\right ) \log (x)}{\left (-3+x^2+x^4\right )^2} \, dx-8 \int \frac {x \log (x)}{-3+x^2+x^4} \, dx\\ &=-\frac {4 \tanh ^{-1}\left (\frac {1+2 x^2}{\sqrt {13}}\right )}{\sqrt {13}}-8 \int \left (-\frac {2 x \log (x)}{\sqrt {13} \left (-1+\sqrt {13}-2 x^2\right )}-\frac {2 x \log (x)}{\sqrt {13} \left (1+\sqrt {13}+2 x^2\right )}\right ) \, dx+8 \int \left (-\frac {6 x \log (x)}{\left (-3+x^2+x^4\right )^2}+\frac {x^3 \log (x)}{\left (-3+x^2+x^4\right )^2}\right ) \, dx\\ &=-\frac {4 \tanh ^{-1}\left (\frac {1+2 x^2}{\sqrt {13}}\right )}{\sqrt {13}}+8 \int \frac {x^3 \log (x)}{\left (-3+x^2+x^4\right )^2} \, dx-48 \int \frac {x \log (x)}{\left (-3+x^2+x^4\right )^2} \, dx+\frac {16 \int \frac {x \log (x)}{-1+\sqrt {13}-2 x^2} \, dx}{\sqrt {13}}+\frac {16 \int \frac {x \log (x)}{1+\sqrt {13}+2 x^2} \, dx}{\sqrt {13}}\\ &=-\frac {4 \tanh ^{-1}\left (\frac {1+2 x^2}{\sqrt {13}}\right )}{\sqrt {13}}-\frac {4 \log (x) \log \left (1+\frac {2 x^2}{1-\sqrt {13}}\right )}{\sqrt {13}}+\frac {4 \log (x) \log \left (1+\frac {2 x^2}{1+\sqrt {13}}\right )}{\sqrt {13}}+8 \int \left (\frac {2 \left (-1+\sqrt {13}\right ) x \log (x)}{13 \left (-1+\sqrt {13}-2 x^2\right )^2}-\frac {2 x \log (x)}{13 \sqrt {13} \left (-1+\sqrt {13}-2 x^2\right )}-\frac {2 \left (1+\sqrt {13}\right ) x \log (x)}{13 \left (1+\sqrt {13}+2 x^2\right )^2}-\frac {2 x \log (x)}{13 \sqrt {13} \left (1+\sqrt {13}+2 x^2\right )}\right ) \, dx-48 \int \left (\frac {4 x \log (x)}{13 \left (-1+\sqrt {13}-2 x^2\right )^2}+\frac {4 x \log (x)}{13 \sqrt {13} \left (-1+\sqrt {13}-2 x^2\right )}+\frac {4 x \log (x)}{13 \left (1+\sqrt {13}+2 x^2\right )^2}+\frac {4 x \log (x)}{13 \sqrt {13} \left (1+\sqrt {13}+2 x^2\right )}\right ) \, dx+\frac {4 \int \frac {\log \left (1-\frac {2 x^2}{-1+\sqrt {13}}\right )}{x} \, dx}{\sqrt {13}}-\frac {4 \int \frac {\log \left (1+\frac {2 x^2}{1+\sqrt {13}}\right )}{x} \, dx}{\sqrt {13}}\\ &=-\frac {4 \tanh ^{-1}\left (\frac {1+2 x^2}{\sqrt {13}}\right )}{\sqrt {13}}-\frac {4 \log (x) \log \left (1+\frac {2 x^2}{1-\sqrt {13}}\right )}{\sqrt {13}}+\frac {4 \log (x) \log \left (1+\frac {2 x^2}{1+\sqrt {13}}\right )}{\sqrt {13}}-\frac {2 \text {Li}_2\left (-\frac {2 x^2}{1-\sqrt {13}}\right )}{\sqrt {13}}+\frac {2 \text {Li}_2\left (-\frac {2 x^2}{1+\sqrt {13}}\right )}{\sqrt {13}}-\frac {192}{13} \int \frac {x \log (x)}{\left (-1+\sqrt {13}-2 x^2\right )^2} \, dx-\frac {192}{13} \int \frac {x \log (x)}{\left (1+\sqrt {13}+2 x^2\right )^2} \, dx-\frac {16 \int \frac {x \log (x)}{-1+\sqrt {13}-2 x^2} \, dx}{13 \sqrt {13}}-\frac {16 \int \frac {x \log (x)}{1+\sqrt {13}+2 x^2} \, dx}{13 \sqrt {13}}-\frac {192 \int \frac {x \log (x)}{-1+\sqrt {13}-2 x^2} \, dx}{13 \sqrt {13}}-\frac {192 \int \frac {x \log (x)}{1+\sqrt {13}+2 x^2} \, dx}{13 \sqrt {13}}-\frac {1}{13} \left (16 \left (1-\sqrt {13}\right )\right ) \int \frac {x \log (x)}{\left (-1+\sqrt {13}-2 x^2\right )^2} \, dx-\frac {1}{13} \left (16 \left (1+\sqrt {13}\right )\right ) \int \frac {x \log (x)}{\left (1+\sqrt {13}+2 x^2\right )^2} \, dx\\ &=-\frac {4 \tanh ^{-1}\left (\frac {1+2 x^2}{\sqrt {13}}\right )}{\sqrt {13}}-\frac {8 x^2 \log (x)}{13 \left (1-\sqrt {13}+2 x^2\right )}-\frac {96 x^2 \log (x)}{13 \left (1-\sqrt {13}\right ) \left (1-\sqrt {13}+2 x^2\right )}-\frac {8 x^2 \log (x)}{13 \left (1+\sqrt {13}+2 x^2\right )}-\frac {96 x^2 \log (x)}{13 \left (1+\sqrt {13}\right ) \left (1+\sqrt {13}+2 x^2\right )}-\frac {2 \text {Li}_2\left (-\frac {2 x^2}{1-\sqrt {13}}\right )}{\sqrt {13}}+\frac {2 \text {Li}_2\left (-\frac {2 x^2}{1+\sqrt {13}}\right )}{\sqrt {13}}-\frac {8}{13} \int \frac {x}{-1+\sqrt {13}-2 x^2} \, dx+\frac {8}{13} \int \frac {x}{1+\sqrt {13}+2 x^2} \, dx-\frac {4 \int \frac {\log \left (1-\frac {2 x^2}{-1+\sqrt {13}}\right )}{x} \, dx}{13 \sqrt {13}}+\frac {4 \int \frac {\log \left (1+\frac {2 x^2}{1+\sqrt {13}}\right )}{x} \, dx}{13 \sqrt {13}}-\frac {48 \int \frac {\log \left (1-\frac {2 x^2}{-1+\sqrt {13}}\right )}{x} \, dx}{13 \sqrt {13}}+\frac {48 \int \frac {\log \left (1+\frac {2 x^2}{1+\sqrt {13}}\right )}{x} \, dx}{13 \sqrt {13}}+\frac {96 \int \frac {x}{-1+\sqrt {13}-2 x^2} \, dx}{13 \left (-1+\sqrt {13}\right )}+\frac {96 \int \frac {x}{1+\sqrt {13}+2 x^2} \, dx}{13 \left (1+\sqrt {13}\right )}\\ &=-\frac {4 \tanh ^{-1}\left (\frac {1+2 x^2}{\sqrt {13}}\right )}{\sqrt {13}}-\frac {8 x^2 \log (x)}{13 \left (1-\sqrt {13}+2 x^2\right )}-\frac {96 x^2 \log (x)}{13 \left (1-\sqrt {13}\right ) \left (1-\sqrt {13}+2 x^2\right )}-\frac {8 x^2 \log (x)}{13 \left (1+\sqrt {13}+2 x^2\right )}-\frac {96 x^2 \log (x)}{13 \left (1+\sqrt {13}\right ) \left (1+\sqrt {13}+2 x^2\right )}+\frac {2}{13} \log \left (1-\sqrt {13}+2 x^2\right )+\frac {24 \log \left (1-\sqrt {13}+2 x^2\right )}{13 \left (1-\sqrt {13}\right )}+\frac {2}{13} \log \left (1+\sqrt {13}+2 x^2\right )+\frac {24 \log \left (1+\sqrt {13}+2 x^2\right )}{13 \left (1+\sqrt {13}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 17, normalized size = 0.74 \begin {gather*} \frac {4 x^2 \log (x)}{-3+x^2+x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 17, normalized size = 0.74 \begin {gather*} \frac {4 \, x^{2} \log \relax (x)}{x^{4} + x^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 17, normalized size = 0.74 \begin {gather*} \frac {4 \, x^{2} \log \relax (x)}{x^{4} + x^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 18, normalized size = 0.78
method | result | size |
default | \(\frac {4 \ln \relax (x ) x^{2}}{x^{4}+x^{2}-3}\) | \(18\) |
norman | \(\frac {4 \ln \relax (x ) x^{2}}{x^{4}+x^{2}-3}\) | \(18\) |
risch | \(\frac {4 \ln \relax (x ) x^{2}}{x^{4}+x^{2}-3}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4 \, x^{2} \log \relax (x)}{x^{4} + x^{2} - 3} + \frac {2}{13} \, \sqrt {13} \log \left (\frac {2 \, x^{2} - \sqrt {13} + 1}{2 \, x^{2} + \sqrt {13} + 1}\right ) - \frac {2 \, {\left (7 \, x^{2} - 3\right )}}{13 \, {\left (x^{4} + x^{2} - 3\right )}} + \frac {6 \, {\left (2 \, x^{2} + 1\right )}}{13 \, {\left (x^{4} + x^{2} - 3\right )}} + \frac {2 \, {\left (x^{2} - 6\right )}}{13 \, {\left (x^{4} + x^{2} - 3\right )}} - 4 \, \int \frac {x}{x^{4} + x^{2} - 3}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.39, size = 17, normalized size = 0.74 \begin {gather*} \frac {4\,x^2\,\ln \relax (x)}{x^4+x^2-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.65 \begin {gather*} \frac {4 x^{2} \log {\relax (x )}}{x^{4} + x^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________