Optimal. Leaf size=31 \[ 2 \left (2+e^{-3-e^{e^{-4+x}}} \left (-\frac {3}{5}+e^{e^{1+x}}\right ) \log (4)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 49, normalized size of antiderivative = 1.58, number of steps used = 4, number of rules used = 3, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {12, 2282, 2288} \begin {gather*} -\frac {2}{5} e^{-e^{e^{x-4}}-e^{x-4}-3} \left (3 e^{e^{x-4}}-5 e^{\left (\frac {1}{e^4}+e\right ) e^x}\right ) \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2282
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{-3-e^{e^{-4+x}}} \left (6 e^{-4+e^{-4+x}+x} \log (4)+e^{e^{1+x}} \left (10 e^{1+x} \log (4)-10 e^{-4+e^{-4+x}+x} \log (4)\right )\right ) \, dx\\ &=\frac {1}{5} \operatorname {Subst}\left (\int 2 e^{-7-e^{\frac {x}{e^4}}} \left (3 e^{\frac {x}{e^4}}+5 e^{5+e x}-5 e^{\frac {x}{e^4}+e x}\right ) \log (4) \, dx,x,e^x\right )\\ &=\frac {1}{5} (2 \log (4)) \operatorname {Subst}\left (\int e^{-7-e^{\frac {x}{e^4}}} \left (3 e^{\frac {x}{e^4}}+5 e^{5+e x}-5 e^{\frac {x}{e^4}+e x}\right ) \, dx,x,e^x\right )\\ &=-\frac {2}{5} e^{-3-e^{e^{-4+x}}-e^{-4+x}} \left (3 e^{e^{-4+x}}-5 e^{e^x \left (\frac {1}{e^4}+e\right )}\right ) \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 30, normalized size = 0.97 \begin {gather*} \frac {2}{5} e^{-3-e^{e^{-4+x}}} \left (-3+5 e^{e^{1+x}}\right ) \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 49, normalized size = 1.58 \begin {gather*} \frac {4}{5} \, {\left (5 \, e^{\left (e^{\left (x + 1\right )}\right )} \log \relax (2) - 3 \, \log \relax (2)\right )} e^{\left (-{\left (e^{\left ({\left ({\left (x - 4\right )} e^{5} + e^{\left (x + 1\right )}\right )} e^{\left (-5\right )} + 5\right )} + 3 \, e^{\left (x + 1\right )}\right )} e^{\left (-x - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4}{5} \, {\left (5 \, {\left (e^{\left (x + e^{\left (x - 4\right )} - 4\right )} \log \relax (2) - e^{\left (x + 1\right )} \log \relax (2)\right )} e^{\left (e^{\left (x + 1\right )}\right )} - 3 \, e^{\left (x + e^{\left (x - 4\right )} - 4\right )} \log \relax (2)\right )} e^{\left (-e^{\left (e^{\left (x - 4\right )}\right )} - 3\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 27, normalized size = 0.87
method | result | size |
risch | \(\frac {\left (20 \ln \relax (2) {\mathrm e}^{{\mathrm e}^{x +1}}-12 \ln \relax (2)\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x -4}}-3}}{5}\) | \(27\) |
norman | \(\left (4 \ln \relax (2) {\mathrm e}^{{\mathrm e}^{5} {\mathrm e}^{x -4}}-\frac {12 \ln \relax (2)}{5}\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x -4}}-3}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 33, normalized size = 1.06 \begin {gather*} 4 \, e^{\left (e^{\left (x + 1\right )} - e^{\left (e^{\left (x - 4\right )}\right )} - 3\right )} \log \relax (2) - \frac {12}{5} \, e^{\left (-e^{\left (e^{\left (x - 4\right )}\right )} - 3\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.26, size = 25, normalized size = 0.81 \begin {gather*} \frac {4\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{-{\mathrm {e}}^{{\mathrm {e}}^{-4}\,{\mathrm {e}}^x}}\,\ln \relax (2)\,\left (5\,{\mathrm {e}}^{\mathrm {e}\,{\mathrm {e}}^x}-3\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________