Optimal. Leaf size=31 \[ x-\frac {1}{2} x^2 \left (4+\frac {1}{5} \left (-3 x+x^2-\log \left (\frac {x}{\log ^2(4)}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 35, normalized size of antiderivative = 1.13, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {12, 2304} \begin {gather*} -\frac {x^4}{10}+\frac {3 x^3}{10}-2 x^2+\frac {1}{10} x^2 \log \left (\frac {x}{\log ^2(4)}\right )+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \left (10-39 x+9 x^2-4 x^3+2 x \log \left (\frac {x}{\log ^2(4)}\right )\right ) \, dx\\ &=x-\frac {39 x^2}{20}+\frac {3 x^3}{10}-\frac {x^4}{10}+\frac {1}{5} \int x \log \left (\frac {x}{\log ^2(4)}\right ) \, dx\\ &=x-2 x^2+\frac {3 x^3}{10}-\frac {x^4}{10}+\frac {1}{10} x^2 \log \left (\frac {x}{\log ^2(4)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 35, normalized size = 1.13 \begin {gather*} x-2 x^2+\frac {3 x^3}{10}-\frac {x^4}{10}+\frac {1}{10} x^2 \log \left (\frac {x}{\log ^2(4)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 30, normalized size = 0.97 \begin {gather*} -\frac {1}{10} \, x^{4} + \frac {3}{10} \, x^{3} + \frac {1}{10} \, x^{2} \log \left (\frac {x}{4 \, \log \relax (2)^{2}}\right ) - 2 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 30, normalized size = 0.97 \begin {gather*} -\frac {1}{10} \, x^{4} + \frac {3}{10} \, x^{3} + \frac {1}{10} \, x^{2} \log \left (\frac {x}{4 \, \log \relax (2)^{2}}\right ) - 2 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 31, normalized size = 1.00
method | result | size |
default | \(x -2 x^{2}+\frac {3 x^{3}}{10}-\frac {x^{4}}{10}+\frac {x^{2} \ln \left (\frac {x}{4 \ln \relax (2)^{2}}\right )}{10}\) | \(31\) |
norman | \(x -2 x^{2}+\frac {3 x^{3}}{10}-\frac {x^{4}}{10}+\frac {x^{2} \ln \left (\frac {x}{4 \ln \relax (2)^{2}}\right )}{10}\) | \(31\) |
risch | \(x -2 x^{2}+\frac {3 x^{3}}{10}-\frac {x^{4}}{10}+\frac {x^{2} \ln \left (\frac {x}{4 \ln \relax (2)^{2}}\right )}{10}\) | \(31\) |
derivativedivides | \(\frac {4 \ln \relax (2)^{2} \left (\frac {5 x}{4 \ln \relax (2)^{2}}-\frac {5 x^{2}}{2 \ln \relax (2)^{2}}+\frac {3 x^{3}}{8 \ln \relax (2)^{2}}-\frac {x^{4}}{8 \ln \relax (2)^{2}}+\frac {x^{2} \ln \left (\frac {x}{4 \ln \relax (2)^{2}}\right )}{8 \ln \relax (2)^{2}}\right )}{5}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 30, normalized size = 0.97 \begin {gather*} -\frac {1}{10} \, x^{4} + \frac {3}{10} \, x^{3} + \frac {1}{10} \, x^{2} \log \left (\frac {x}{4 \, \log \relax (2)^{2}}\right ) - 2 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.15, size = 32, normalized size = 1.03 \begin {gather*} -\frac {x\,\left (20\,x+2\,x\,\ln \relax (2)+2\,x\,\ln \left (\ln \relax (2)\right )-x\,\ln \relax (x)-3\,x^2+x^3-10\right )}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 32, normalized size = 1.03 \begin {gather*} - \frac {x^{4}}{10} + \frac {3 x^{3}}{10} + \frac {x^{2} \log {\left (\frac {x}{4 \log {\relax (2 )}^{2}} \right )}}{10} - 2 x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________