Optimal. Leaf size=19 \[ 4 x^2 \left (-4+x+\left (-\frac {e^x}{2}+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 33, normalized size of antiderivative = 1.74, number of steps used = 19, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} 4 x^4-4 e^x x^3+4 x^3+e^{2 x} x^2-16 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-16 x^2+4 x^3+4 x^4+\int e^{2 x} \left (2 x+2 x^2\right ) \, dx+\int e^x \left (-12 x^2-4 x^3\right ) \, dx\\ &=-16 x^2+4 x^3+4 x^4+\int e^x (-12-4 x) x^2 \, dx+\int e^{2 x} x (2+2 x) \, dx\\ &=-16 x^2+4 x^3+4 x^4+\int \left (2 e^{2 x} x+2 e^{2 x} x^2\right ) \, dx+\int \left (-12 e^x x^2-4 e^x x^3\right ) \, dx\\ &=-16 x^2+4 x^3+4 x^4+2 \int e^{2 x} x \, dx+2 \int e^{2 x} x^2 \, dx-4 \int e^x x^3 \, dx-12 \int e^x x^2 \, dx\\ &=e^{2 x} x-16 x^2-12 e^x x^2+e^{2 x} x^2+4 x^3-4 e^x x^3+4 x^4-2 \int e^{2 x} x \, dx+12 \int e^x x^2 \, dx+24 \int e^x x \, dx-\int e^{2 x} \, dx\\ &=-\frac {e^{2 x}}{2}+24 e^x x-16 x^2+e^{2 x} x^2+4 x^3-4 e^x x^3+4 x^4-24 \int e^x \, dx-24 \int e^x x \, dx+\int e^{2 x} \, dx\\ &=-24 e^x-16 x^2+e^{2 x} x^2+4 x^3-4 e^x x^3+4 x^4+24 \int e^x \, dx\\ &=-16 x^2+e^{2 x} x^2+4 x^3-4 e^x x^3+4 x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 24, normalized size = 1.26 \begin {gather*} x^2 \left (e^{2 x}-4 e^x x+4 \left (-4+x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 31, normalized size = 1.63 \begin {gather*} 4 \, x^{4} - 4 \, x^{3} e^{x} + 4 \, x^{3} + x^{2} e^{\left (2 \, x\right )} - 16 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.96, size = 31, normalized size = 1.63 \begin {gather*} 4 \, x^{4} - 4 \, x^{3} e^{x} + 4 \, x^{3} + x^{2} e^{\left (2 \, x\right )} - 16 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 32, normalized size = 1.68
method | result | size |
default | \({\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{x} x^{3}-16 x^{2}+4 x^{3}+4 x^{4}\) | \(32\) |
norman | \({\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{x} x^{3}-16 x^{2}+4 x^{3}+4 x^{4}\) | \(32\) |
risch | \({\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{x} x^{3}-16 x^{2}+4 x^{3}+4 x^{4}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 31, normalized size = 1.63 \begin {gather*} 4 \, x^{4} - 4 \, x^{3} e^{x} + 4 \, x^{3} + x^{2} e^{\left (2 \, x\right )} - 16 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.09, size = 23, normalized size = 1.21 \begin {gather*} x^2\,\left (4\,x+{\mathrm {e}}^{2\,x}-4\,x\,{\mathrm {e}}^x+4\,x^2-16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 31, normalized size = 1.63 \begin {gather*} 4 x^{4} - 4 x^{3} e^{x} + 4 x^{3} + x^{2} e^{2 x} - 16 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________