Optimal. Leaf size=28 \[ 2 x \left (\frac {1}{2} \left (4-e^{\frac {(7+e)^2}{6+x^2}}\right )+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {144+144 x+48 x^2+48 x^3+4 x^4+4 x^5+e^{\frac {49+14 e+e^2}{6+x^2}} \left (-36+86 x^2+28 e x^2+2 e^2 x^2-x^4\right )}{36+12 x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {144+144 x+48 x^2+48 x^3+4 x^4+4 x^5+e^{\frac {49+14 e+e^2}{6+x^2}} \left (-36+86 x^2+28 e x^2+2 e^2 x^2-x^4\right )}{\left (6+x^2\right )^2} \, dx\\ &=\int \left (\frac {144}{\left (6+x^2\right )^2}+\frac {144 x}{\left (6+x^2\right )^2}+\frac {48 x^2}{\left (6+x^2\right )^2}+\frac {48 x^3}{\left (6+x^2\right )^2}+\frac {4 x^4}{\left (6+x^2\right )^2}+\frac {4 x^5}{\left (6+x^2\right )^2}+\frac {e^{\frac {(7+e)^2}{6+x^2}} \left (-36+2 \left (43+14 e+e^2\right ) x^2-x^4\right )}{\left (6+x^2\right )^2}\right ) \, dx\\ &=4 \int \frac {x^4}{\left (6+x^2\right )^2} \, dx+4 \int \frac {x^5}{\left (6+x^2\right )^2} \, dx+48 \int \frac {x^2}{\left (6+x^2\right )^2} \, dx+48 \int \frac {x^3}{\left (6+x^2\right )^2} \, dx+144 \int \frac {1}{\left (6+x^2\right )^2} \, dx+144 \int \frac {x}{\left (6+x^2\right )^2} \, dx+\int \frac {e^{\frac {(7+e)^2}{6+x^2}} \left (-36+2 \left (43+14 e+e^2\right ) x^2-x^4\right )}{\left (6+x^2\right )^2} \, dx\\ &=-\frac {72}{6+x^2}-\frac {12 x}{6+x^2}-\frac {2 x^3}{6+x^2}+2 \operatorname {Subst}\left (\int \frac {x^2}{(6+x)^2} \, dx,x,x^2\right )+6 \int \frac {x^2}{6+x^2} \, dx+12 \int \frac {1}{6+x^2} \, dx+24 \int \frac {1}{6+x^2} \, dx+24 \operatorname {Subst}\left (\int \frac {x}{(6+x)^2} \, dx,x,x^2\right )+\int \left (-e^{\frac {(7+e)^2}{6+x^2}}-\frac {12 e^{\frac {(7+e)^2}{6+x^2}} (7+e)^2}{\left (6+x^2\right )^2}+\frac {2 e^{\frac {(7+e)^2}{6+x^2}} (7+e)^2}{6+x^2}\right ) \, dx\\ &=6 x-\frac {72}{6+x^2}-\frac {12 x}{6+x^2}-\frac {2 x^3}{6+x^2}+6 \sqrt {6} \tan ^{-1}\left (\frac {x}{\sqrt {6}}\right )+2 \operatorname {Subst}\left (\int \left (1+\frac {36}{(6+x)^2}-\frac {12}{6+x}\right ) \, dx,x,x^2\right )+24 \operatorname {Subst}\left (\int \left (-\frac {6}{(6+x)^2}+\frac {1}{6+x}\right ) \, dx,x,x^2\right )-36 \int \frac {1}{6+x^2} \, dx+\left (2 (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{6+x^2} \, dx-\left (12 (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (6+x^2\right )^2} \, dx-\int e^{\frac {(7+e)^2}{6+x^2}} \, dx\\ &=6 x+2 x^2-\frac {12 x}{6+x^2}-\frac {2 x^3}{6+x^2}+\left (2 (7+e)^2\right ) \int \left (\frac {i e^{\frac {(7+e)^2}{6+x^2}}}{2 \sqrt {6} \left (i \sqrt {6}-x\right )}+\frac {i e^{\frac {(7+e)^2}{6+x^2}}}{2 \sqrt {6} \left (i \sqrt {6}+x\right )}\right ) \, dx-\left (12 (7+e)^2\right ) \int \left (-\frac {e^{\frac {(7+e)^2}{6+x^2}}}{24 \left (i \sqrt {6}-x\right )^2}-\frac {e^{\frac {(7+e)^2}{6+x^2}}}{24 \left (i \sqrt {6}+x\right )^2}-\frac {e^{\frac {(7+e)^2}{6+x^2}}}{12 \left (-6-x^2\right )}\right ) \, dx-\int e^{\frac {(7+e)^2}{6+x^2}} \, dx\\ &=6 x+2 x^2-\frac {12 x}{6+x^2}-\frac {2 x^3}{6+x^2}+\frac {1}{2} (7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (i \sqrt {6}-x\right )^2} \, dx+\frac {1}{2} (7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (i \sqrt {6}+x\right )^2} \, dx+(7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{-6-x^2} \, dx+\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}-x} \, dx}{\sqrt {6}}+\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}+x} \, dx}{\sqrt {6}}-\int e^{\frac {(7+e)^2}{6+x^2}} \, dx\\ &=6 x+2 x^2-\frac {12 x}{6+x^2}-\frac {2 x^3}{6+x^2}+\frac {1}{2} (7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (i \sqrt {6}-x\right )^2} \, dx+\frac {1}{2} (7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (i \sqrt {6}+x\right )^2} \, dx+(7+e)^2 \int \left (-\frac {i e^{\frac {(7+e)^2}{6+x^2}}}{2 \sqrt {6} \left (i \sqrt {6}-x\right )}-\frac {i e^{\frac {(7+e)^2}{6+x^2}}}{2 \sqrt {6} \left (i \sqrt {6}+x\right )}\right ) \, dx+\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}-x} \, dx}{\sqrt {6}}+\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}+x} \, dx}{\sqrt {6}}-\int e^{\frac {(7+e)^2}{6+x^2}} \, dx\\ &=6 x+2 x^2-\frac {12 x}{6+x^2}-\frac {2 x^3}{6+x^2}+\frac {1}{2} (7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (i \sqrt {6}-x\right )^2} \, dx+\frac {1}{2} (7+e)^2 \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{\left (i \sqrt {6}+x\right )^2} \, dx-\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}-x} \, dx}{2 \sqrt {6}}-\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}+x} \, dx}{2 \sqrt {6}}+\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}-x} \, dx}{\sqrt {6}}+\frac {\left (i (7+e)^2\right ) \int \frac {e^{\frac {(7+e)^2}{6+x^2}}}{i \sqrt {6}+x} \, dx}{\sqrt {6}}-\int e^{\frac {(7+e)^2}{6+x^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.62, size = 24, normalized size = 0.86 \begin {gather*} x \left (4-e^{\frac {(7+e)^2}{6+x^2}}+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 29, normalized size = 1.04 \begin {gather*} 2 \, x^{2} - x e^{\left (\frac {e^{2} + 14 \, e + 49}{x^{2} + 6}\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 51, normalized size = 1.82 \begin {gather*} 2 \, x^{2} - x e^{\left (-\frac {x^{2} e^{2} + 14 \, x^{2} e + 49 \, x^{2}}{6 \, {\left (x^{2} + 6\right )}} + \frac {1}{6} \, e^{2} + \frac {7}{3} \, e + \frac {49}{6}\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 30, normalized size = 1.07
method | result | size |
risch | \(2 x^{2}-x \,{\mathrm e}^{\frac {{\mathrm e}^{2}+14 \,{\mathrm e}+49}{x^{2}+6}}+4 x\) | \(30\) |
norman | \(\frac {24 x +4 x^{3}+2 x^{4}-6 x \,{\mathrm e}^{\frac {{\mathrm e}^{2}+14 \,{\mathrm e}+49}{x^{2}+6}}-{\mathrm e}^{\frac {{\mathrm e}^{2}+14 \,{\mathrm e}+49}{x^{2}+6}} x^{3}-72}{x^{2}+6}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 44, normalized size = 1.57 \begin {gather*} 2 \, x^{2} - x e^{\left (\frac {e^{2}}{x^{2} + 6} + \frac {14 \, e}{x^{2} + 6} + \frac {49}{x^{2} + 6}\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.43, size = 45, normalized size = 1.61 \begin {gather*} 4\,x+2\,x^2-x\,{\mathrm {e}}^{\frac {49}{x^2+6}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^2}{x^2+6}}\,{\mathrm {e}}^{\frac {14\,\mathrm {e}}{x^2+6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 26, normalized size = 0.93 \begin {gather*} 2 x^{2} - x e^{\frac {e^{2} + 14 e + 49}{x^{2} + 6}} + 4 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________