Optimal. Leaf size=20 \[ e^x \left (11-4^{2 \left (-\frac {5}{4}+x\right )}-x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 25, normalized size of antiderivative = 1.25, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2176, 2194, 2287, 12} \begin {gather*} e^x (10-x)-2^{4 x-5} e^x+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2287
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(-1-\log (16)) \int 2^{-5+4 x} e^x \, dx+\int e^x (10-x) \, dx\\ &=e^x (10-x)+(-1-\log (16)) \int \frac {1}{32} e^{x (1+\log (16))} \, dx+\int e^x \, dx\\ &=e^x+e^x (10-x)+\frac {1}{32} (-1-\log (16)) \int e^{x (1+\log (16))} \, dx\\ &=e^x-2^{-5+4 x} e^x+e^x (10-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 15, normalized size = 0.75 \begin {gather*} -\frac {1}{32} e^x \left (-352+16^x+32 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 19, normalized size = 0.95 \begin {gather*} -2^{4 \, x - 5} e^{x} - {\left (x - 11\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 22, normalized size = 1.10 \begin {gather*} -{\left (x - 11\right )} e^{x} - e^{\left (4 \, x \log \relax (2) + x - 5 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.75
method | result | size |
risch | \(-\left (2^{4 x -5}+x -11\right ) {\mathrm e}^{x}\) | \(15\) |
norman | \(-{\mathrm e}^{x} x -{\mathrm e}^{x} {\mathrm e}^{\left (4 x -5\right ) \ln \relax (2)}+11 \,{\mathrm e}^{x}\) | \(24\) |
default | \(-{\mathrm e}^{x} x +11 \,{\mathrm e}^{x}-\frac {4 \,{\mathrm e}^{x +\left (4 x -5\right ) \ln \relax (2)} \ln \relax (2)}{1+4 \ln \relax (2)}-\frac {{\mathrm e}^{x +\left (4 x -5\right ) \ln \relax (2)}}{1+4 \ln \relax (2)}\) | \(55\) |
meijerg | \(-11+\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}+\frac {1-{\mathrm e}^{x \ln \relax (2) \left (4+\frac {1}{\ln \relax (2)}\right )}}{32+\frac {8}{\ln \relax (2)}}+\frac {1-{\mathrm e}^{x \ln \relax (2) \left (4+\frac {1}{\ln \relax (2)}\right )}}{32 \ln \relax (2) \left (4+\frac {1}{\ln \relax (2)}\right )}+10 \,{\mathrm e}^{x}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 22, normalized size = 1.10 \begin {gather*} -{\left (x - 1\right )} e^{x} - \frac {1}{32} \, e^{\left (4 \, x \log \relax (2) + x\right )} + 10 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 14, normalized size = 0.70 \begin {gather*} -\frac {{\mathrm {e}}^x\,\left (32\,x+2^{4\,x}-352\right )}{32} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 32, normalized size = 1.60 \begin {gather*} \left (11 - x\right ) e^{x} + \frac {\left (- 4 \log {\relax (2 )} - 1\right ) e^{x} e^{4 x \log {\relax (2 )}}}{32 + 128 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________