Optimal. Leaf size=30 \[ \frac {x}{\log \left (\frac {\frac {3 (2-x)}{2}+x}{(5+x) \log (4+3 x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-90 x-3 x^2+3 x^3+\left (-44 x-33 x^2\right ) \log (4+3 x)+\left (-120-94 x+x^2+3 x^3\right ) \log (4+3 x) \log \left (\frac {6-x}{(10+2 x) \log (4+3 x)}\right )}{\left (-120-94 x+x^2+3 x^3\right ) \log (4+3 x) \log ^2\left (\frac {6-x}{(10+2 x) \log (4+3 x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {x \left (-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)\right )}{(-6+x) (5+x) (4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}+\frac {1}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}\right ) \, dx\\ &=\int \frac {x \left (-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)\right )}{(-6+x) (5+x) (4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\int \frac {1}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx\\ &=\int \left (\frac {3 \left (-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)\right )}{121 (-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {5 \left (-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)\right )}{121 (5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}+\frac {6 \left (-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)\right )}{121 (4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}\right ) \, dx+\int \frac {1}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx\\ &=\frac {3}{121} \int \frac {-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {5}{121} \int \frac {-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\frac {6}{121} \int \frac {-90-3 x+3 x^2-44 \log (4+3 x)-33 x \log (4+3 x)}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\int \frac {1}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx\\ &=\frac {3}{121} \int \left (-\frac {44}{(-6+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {33 x}{(-6+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {90}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {3 x}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}+\frac {3 x^2}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}\right ) \, dx-\frac {5}{121} \int \left (-\frac {44}{(5+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {33 x}{(5+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {90}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {3 x}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}+\frac {3 x^2}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}\right ) \, dx+\frac {6}{121} \int \left (-\frac {44}{(4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {33 x}{(4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {90}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}-\frac {3 x}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}+\frac {3 x^2}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )}\right ) \, dx+\int \frac {1}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx\\ &=-\left (\frac {9}{121} \int \frac {x}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx\right )+\frac {9}{121} \int \frac {x^2}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\frac {15}{121} \int \frac {x}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {15}{121} \int \frac {x^2}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {18}{121} \int \frac {x}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\frac {18}{121} \int \frac {x^2}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {9}{11} \int \frac {x}{(-6+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {12}{11} \int \frac {1}{(-6+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\frac {15}{11} \int \frac {x}{(5+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {18}{11} \int \frac {x}{(4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\frac {20}{11} \int \frac {1}{(5+x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {24}{11} \int \frac {1}{(4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {270}{121} \int \frac {1}{(-6+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\frac {450}{121} \int \frac {1}{(5+x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx-\frac {540}{121} \int \frac {1}{(4+3 x) \log (4+3 x) \log ^2\left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx+\int \frac {1}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 0.83 \begin {gather*} \frac {x}{\log \left (-\frac {-6+x}{2 (5+x) \log (4+3 x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 23, normalized size = 0.77 \begin {gather*} \frac {x}{\log \left (-\frac {x - 6}{2 \, {\left (x + 5\right )} \log \left (3 \, x + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 33, normalized size = 1.10 \begin {gather*} -\frac {x}{\log \left (2 \, x \log \left (3 \, x + 4\right ) + 10 \, \log \left (3 \, x + 4\right )\right ) - \log \left (-x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.38, size = 304, normalized size = 10.13
method | result | size |
risch | \(-\frac {2 i x}{\pi \,\mathrm {csgn}\left (i \left (x -6\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -6\right )}{5+x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x -6\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -6\right )}{5+x}\right ) \mathrm {csgn}\left (\frac {i}{5+x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (4+3 x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x -6\right )}{5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -6\right )}{\ln \left (4+3 x \right ) \left (5+x \right )}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (4+3 x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x -6\right )}{\ln \left (4+3 x \right ) \left (5+x \right )}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left (x -6\right )}{5+x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left (x -6\right )}{5+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{5+x}\right )+\pi \,\mathrm {csgn}\left (\frac {i \left (x -6\right )}{5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -6\right )}{\ln \left (4+3 x \right ) \left (5+x \right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x -6\right )}{\ln \left (4+3 x \right ) \left (5+x \right )}\right )^{3}-2 \pi \mathrm {csgn}\left (\frac {i \left (x -6\right )}{\ln \left (4+3 x \right ) \left (5+x \right )}\right )^{2}+2 \pi +2 i \ln \relax (2)-2 i \ln \left (x -6\right )+2 i \ln \left (\ln \left (4+3 x \right )\right )+2 i \ln \left (5+x \right )}\) | \(304\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 27, normalized size = 0.90 \begin {gather*} -\frac {x}{\log \relax (2) + \log \left (x + 5\right ) - \log \left (-x + 6\right ) + \log \left (\log \left (3 \, x + 4\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {90\,x+\ln \left (3\,x+4\right )\,\left (33\,x^2+44\,x\right )+3\,x^2-3\,x^3+\ln \left (-\frac {x-6}{\ln \left (3\,x+4\right )\,\left (2\,x+10\right )}\right )\,\ln \left (3\,x+4\right )\,\left (-3\,x^3-x^2+94\,x+120\right )}{{\ln \left (-\frac {x-6}{\ln \left (3\,x+4\right )\,\left (2\,x+10\right )}\right )}^2\,\ln \left (3\,x+4\right )\,\left (-3\,x^3-x^2+94\,x+120\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 17, normalized size = 0.57 \begin {gather*} \frac {x}{\log {\left (\frac {6 - x}{\left (2 x + 10\right ) \log {\left (3 x + 4 \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________