Optimal. Leaf size=25 \[ e^{e^{2 x}+\left (-1+\log \left (4+e^x-\frac {x^2}{6}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 44, normalized size of antiderivative = 1.76, number of steps used = 2, number of rules used = 2, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {12, 2288} \begin {gather*} \frac {36 e^{\log ^2\left (\frac {1}{6} \left (-x^2+6 e^x+24\right )\right )+e^{2 x}+1}}{\left (-x^2+6 e^x+24\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=36 \int \frac {e^{1+\log ^2\left (\frac {1}{6} \left (24+6 e^x-x^2\right )\right )} \left (e^{e^{2 x}} \left (-12 e^x+4 x+e^{2 x} \left (48+12 e^x-2 x^2\right )\right )+e^{e^{2 x}} \left (12 e^x-4 x\right ) \log \left (\frac {1}{6} \left (24+6 e^x-x^2\right )\right )\right )}{\left (24+6 e^x-x^2\right )^3} \, dx\\ &=\frac {36 e^{1+e^{2 x}+\log ^2\left (\frac {1}{6} \left (24+6 e^x-x^2\right )\right )}}{\left (24+6 e^x-x^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 40, normalized size = 1.60 \begin {gather*} \frac {36 e^{1+e^{2 x}+\log ^2\left (4+e^x-\frac {x^2}{6}\right )}}{\left (24+6 e^x-x^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 31, normalized size = 1.24 \begin {gather*} e^{\left (\log \left (-\frac {1}{6} \, x^{2} + e^{x} + 4\right )^{2} + e^{\left (2 \, x\right )} - 2 \, \log \left (-\frac {1}{6} \, x^{2} + e^{x} + 4\right ) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, {\left (x - 3 \, e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )} \log \left (-\frac {1}{6} \, x^{2} + e^{x} + 4\right ) + {\left ({\left (x^{2} - 6 \, e^{x} - 24\right )} e^{\left (2 \, x\right )} - 2 \, x + 6 \, e^{x}\right )} e^{\left (e^{\left (2 \, x\right )}\right )}\right )} e^{\left (\log \left (-\frac {1}{6} \, x^{2} + e^{x} + 4\right )^{2} - 2 \, \log \left (-\frac {1}{6} \, x^{2} + e^{x} + 4\right ) + 1\right )}}{x^{2} - 6 \, e^{x} - 24}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 32, normalized size = 1.28
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{2 x}+\ln \left ({\mathrm e}^{x}-\frac {x^{2}}{6}+4\right )^{2}+1}}{\left ({\mathrm e}^{x}-\frac {x^{2}}{6}+4\right )^{2}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 98, normalized size = 3.92 \begin {gather*} \frac {9 \cdot 2^{2 \, \log \relax (3) + 2} e^{\left (\log \relax (3)^{2} + \log \relax (2)^{2} - 2 \, \log \relax (3) \log \left (-x^{2} + 6 \, e^{x} + 24\right ) - 2 \, \log \relax (2) \log \left (-x^{2} + 6 \, e^{x} + 24\right ) + \log \left (-x^{2} + 6 \, e^{x} + 24\right )^{2} + e^{\left (2 \, x\right )} + 1\right )}}{x^{4} - 48 \, x^{2} - 12 \, {\left (x^{2} - 24\right )} e^{x} + 36 \, e^{\left (2 \, x\right )} + 576} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.28, size = 50, normalized size = 2.00 \begin {gather*} \frac {\mathrm {e}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{{\ln \left ({\mathrm {e}}^x-\frac {x^2}{6}+4\right )}^2}}{{\mathrm {e}}^{2\,x}+8\,{\mathrm {e}}^x-\frac {x^2\,{\mathrm {e}}^x}{3}-\frac {4\,x^2}{3}+\frac {x^4}{36}+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.30, size = 54, normalized size = 2.16 \begin {gather*} \frac {36 e^{\log {\left (- \frac {x^{2}}{6} + e^{x} + 4 \right )}^{2} + 1} e^{e^{2 x}}}{x^{4} - 12 x^{2} e^{x} - 48 x^{2} + 36 e^{2 x} + 288 e^{x} + 576} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________