Optimal. Leaf size=31 \[ -\frac {x}{5 e^4}+\frac {-1+e^{2+x}-x}{1+e^4 x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 42, normalized size of antiderivative = 1.35, number of steps used = 7, number of rules used = 6, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {28, 6742, 2288, 1814, 21, 8} \begin {gather*} \frac {e^{x+2}}{e^4 x^2+1}-\frac {x+1}{e^4 x^2+1}-\frac {x}{5 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 28
Rule 1814
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (5 e^{12}\right ) \int \frac {-1+e^4 \left (-5-2 x^2\right )+e^8 \left (10 x+5 x^2-x^4\right )+e^{2+x} \left (5 e^4+e^8 \left (-10 x+5 x^2\right )\right )}{\left (5 e^8+5 e^{12} x^2\right )^2} \, dx\\ &=\left (5 e^{12}\right ) \int \left (\frac {e^{-10+x} \left (1-2 e^4 x+e^4 x^2\right )}{5 \left (1+e^4 x^2\right )^2}+\frac {-1-5 e^4+10 e^8 x-e^4 \left (2-5 e^4\right ) x^2-e^8 x^4}{25 e^{16} \left (1+e^4 x^2\right )^2}\right ) \, dx\\ &=\frac {\int \frac {-1-5 e^4+10 e^8 x-e^4 \left (2-5 e^4\right ) x^2-e^8 x^4}{\left (1+e^4 x^2\right )^2} \, dx}{5 e^4}+e^{12} \int \frac {e^{-10+x} \left (1-2 e^4 x+e^4 x^2\right )}{\left (1+e^4 x^2\right )^2} \, dx\\ &=\frac {e^{2+x}}{1+e^4 x^2}-\frac {1+x}{1+e^4 x^2}-\frac {\int \frac {2+2 e^4 x^2}{1+e^4 x^2} \, dx}{10 e^4}\\ &=\frac {e^{2+x}}{1+e^4 x^2}-\frac {1+x}{1+e^4 x^2}-\frac {\int 1 \, dx}{5 e^4}\\ &=-\frac {x}{5 e^4}+\frac {e^{2+x}}{1+e^4 x^2}-\frac {1+x}{1+e^4 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 39, normalized size = 1.26 \begin {gather*} -\frac {-5 e^{6+x}+x+e^4 \left (5+5 x+x^3\right )}{5 e^4 \left (1+e^4 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 32, normalized size = 1.03 \begin {gather*} -\frac {{\left (x^{3} + 5 \, x + 5\right )} e^{4} + x - 5 \, e^{\left (x + 6\right )}}{5 \, {\left (x^{2} e^{8} + e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 41, normalized size = 1.32
method | result | size |
norman | \(\frac {x^{2} {\mathrm e}^{4}-\frac {x^{3}}{5}-\frac {{\mathrm e}^{-4} \left (5 \,{\mathrm e}^{4}+1\right ) x}{5}+{\mathrm e}^{2+x}}{1+x^{2} {\mathrm e}^{4}}\) | \(41\) |
risch | \(-\frac {x \,{\mathrm e}^{-4}}{5}+\frac {\left (-5 x \,{\mathrm e}^{8}-5 \,{\mathrm e}^{8}\right ) {\mathrm e}^{-8}}{5+5 x^{2} {\mathrm e}^{4}}+\frac {{\mathrm e}^{2+x}}{1+x^{2} {\mathrm e}^{4}}\) | \(46\) |
default | \(-\frac {{\mathrm e}^{8} x \,{\mathrm e}^{-4}}{2 \left (x^{2} {\mathrm e}^{8}+{\mathrm e}^{4}\right )}-\frac {{\mathrm e}^{8} {\mathrm e}^{-4} \arctan \left (\frac {x \,{\mathrm e}^{8}}{\sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}\right )}{2 \sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}+\frac {{\mathrm e}^{4} x^{2}}{1+x^{2} {\mathrm e}^{4}}+\frac {x}{5 x^{2} {\mathrm e}^{8}+5 \,{\mathrm e}^{4}}-\frac {\arctan \left (\frac {x \,{\mathrm e}^{8}}{\sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}\right )}{5 \sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}-\frac {{\mathrm e}^{4} x}{2 \left (x^{2} {\mathrm e}^{8}+{\mathrm e}^{4}\right )}+\frac {{\mathrm e}^{4} \arctan \left (\frac {x \,{\mathrm e}^{8}}{\sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}\right )}{2 \sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}-\frac {{\mathrm e}^{4} {\mathrm e}^{-8} x}{5}-\frac {{\mathrm e}^{4} x \,{\mathrm e}^{-4}}{5 \left (x^{2} {\mathrm e}^{8}+{\mathrm e}^{4}\right )}+\frac {{\mathrm e}^{4} \arctan \left (\frac {x \,{\mathrm e}^{8}}{\sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}\right ) {\mathrm e}^{-4}}{5 \sqrt {{\mathrm e}^{8} {\mathrm e}^{4}}}+{\mathrm e}^{2} {\mathrm e}^{4} \left (\frac {{\mathrm e}^{x} x \,{\mathrm e}^{-4}}{2+2 x^{2} {\mathrm e}^{4}}+\frac {i \left ({\mathrm e}^{-4}\right )^{2} \left ({\mathrm e}^{i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x -i\right ) {\mathrm e}^{-2}\right ) {\mathrm e}^{2}-{\mathrm e}^{-i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x +i\right ) {\mathrm e}^{-2}\right ) {\mathrm e}^{2}-i {\mathrm e}^{i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x -i\right ) {\mathrm e}^{-2}\right )-i {\mathrm e}^{-i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x +i\right ) {\mathrm e}^{-2}\right )\right )}{4}\right )-2 \,{\mathrm e}^{2} {\mathrm e}^{8} \left (-\frac {{\mathrm e}^{x} {\mathrm e}^{-8}}{2 \left (1+x^{2} {\mathrm e}^{4}\right )}+\frac {i {\mathrm e}^{-8} \left ({\mathrm e}^{i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x -i\right ) {\mathrm e}^{-2}\right )-{\mathrm e}^{-i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x +i\right ) {\mathrm e}^{-2}\right )\right ) {\mathrm e}^{-2}}{4}\right )+{\mathrm e}^{2} {\mathrm e}^{8} \left (-\frac {{\mathrm e}^{x} {\mathrm e}^{-8} x}{2 \left (1+x^{2} {\mathrm e}^{4}\right )}+\frac {i {\mathrm e}^{-8} \left ({\mathrm e}^{i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x -i\right ) {\mathrm e}^{-2}\right ) {\mathrm e}^{2}-{\mathrm e}^{-i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x +i\right ) {\mathrm e}^{-2}\right ) {\mathrm e}^{2}+i {\mathrm e}^{i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x -i\right ) {\mathrm e}^{-2}\right )+i {\mathrm e}^{-i {\mathrm e}^{-2}} \expIntegralEi \left (1, -\left ({\mathrm e}^{2} x +i\right ) {\mathrm e}^{-2}\right )\right ) {\mathrm e}^{-4}}{4}\right )\) | \(677\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 166, normalized size = 5.35 \begin {gather*} \frac {1}{2} \, {\left (\arctan \left (x e^{2}\right ) e^{\left (-10\right )} - \frac {x}{x^{2} e^{12} + e^{8}}\right )} e^{8} - \frac {1}{10} \, {\left (2 \, x e^{\left (-12\right )} - 3 \, \arctan \left (x e^{2}\right ) e^{\left (-14\right )} + \frac {x}{x^{2} e^{16} + e^{12}}\right )} e^{8} - \frac {1}{2} \, {\left (\arctan \left (x e^{2}\right ) e^{\left (-6\right )} + \frac {x}{x^{2} e^{8} + e^{4}}\right )} e^{4} - \frac {1}{5} \, {\left (\arctan \left (x e^{2}\right ) e^{\left (-10\right )} - \frac {x}{x^{2} e^{12} + e^{8}}\right )} e^{4} - \frac {1}{10} \, \arctan \left (x e^{2}\right ) e^{\left (-6\right )} - \frac {x}{10 \, {\left (x^{2} e^{8} + e^{4}\right )}} - \frac {e^{8}}{x^{2} e^{12} + e^{8}} + \frac {e^{\left (x + 2\right )}}{x^{2} e^{4} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 34, normalized size = 1.10 \begin {gather*} \frac {{\mathrm {e}}^{x-2}}{x^2+{\mathrm {e}}^{-4}}-\frac {x+1}{{\mathrm {e}}^4\,x^2+1}-\frac {x\,{\mathrm {e}}^{-4}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 31, normalized size = 1.00 \begin {gather*} - \frac {x}{5 e^{4}} - \frac {x + 1}{x^{2} e^{4} + 1} + \frac {e^{x + 2}}{x^{2} e^{4} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________