Optimal. Leaf size=27 \[ -3+x-x^4+\frac {1}{16} e^2 \left (2-\frac {2}{e}+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 35, normalized size of antiderivative = 1.30, number of steps used = 3, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12} \begin {gather*} \frac {e^2 x^4}{16}-x^4+\frac {e^2 x^2}{4}-\frac {e x^2}{4}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (4-2 e x-16 x^3+e^2 \left (2 x+x^3\right )\right ) \, dx\\ &=x-\frac {e x^2}{4}-x^4+\frac {1}{4} e^2 \int \left (2 x+x^3\right ) \, dx\\ &=x-\frac {e x^2}{4}+\frac {e^2 x^2}{4}-x^4+\frac {e^2 x^4}{16}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 36, normalized size = 1.33 \begin {gather*} \frac {1}{4} \left (4 x-e x^2+e^2 x^2-4 x^4+\frac {e^2 x^4}{4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 27, normalized size = 1.00 \begin {gather*} -x^{4} - \frac {1}{4} \, x^{2} e + \frac {1}{16} \, {\left (x^{4} + 4 \, x^{2}\right )} e^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 27, normalized size = 1.00 \begin {gather*} -x^{4} - \frac {1}{4} \, x^{2} e + \frac {1}{16} \, {\left (x^{4} + 4 \, x^{2}\right )} e^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 29, normalized size = 1.07
method | result | size |
risch | \(\frac {x^{4} {\mathrm e}^{2}}{16}+\frac {x^{2} {\mathrm e}^{2}}{4}-\frac {x^{2} {\mathrm e}}{4}-x^{4}+x\) | \(29\) |
default | \(\frac {{\mathrm e}^{2} \left (\frac {1}{4} x^{4}+x^{2}\right )}{4}-\frac {x^{2} {\mathrm e}}{4}-x^{4}+x\) | \(30\) |
norman | \(x +\left (\frac {{\mathrm e}^{2}}{4}-\frac {{\mathrm e}}{4}\right ) x^{2}+\left (\frac {{\mathrm e}^{2}}{16}-1\right ) x^{4}\) | \(30\) |
gosper | \(\frac {x \left (x^{3} {\mathrm e}^{2}+4 \,{\mathrm e}^{2} x -16 x^{3}-4 x \,{\mathrm e}+16\right )}{16}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 27, normalized size = 1.00 \begin {gather*} -x^{4} - \frac {1}{4} \, x^{2} e + \frac {1}{16} \, {\left (x^{4} + 4 \, x^{2}\right )} e^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 26, normalized size = 0.96 \begin {gather*} \left (\frac {{\mathrm {e}}^2}{16}-1\right )\,x^4+\left (\frac {{\mathrm {e}}^2}{4}-\frac {\mathrm {e}}{4}\right )\,x^2+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 24, normalized size = 0.89 \begin {gather*} x^{4} \left (-1 + \frac {e^{2}}{16}\right ) + x^{2} \left (- \frac {e}{4} + \frac {e^{2}}{4}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________