Optimal. Leaf size=21 \[ x-x \log \left (\frac {e^6}{-\frac {4}{5}+e^{6 x}}\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.22, antiderivative size = 78, normalized size of antiderivative = 3.71, number of steps used = 9, number of rules used = 8, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {6742, 2184, 2190, 2279, 2391, 2282, 2394, 2315} \begin {gather*} \frac {1}{6} \text {Li}_2\left (\frac {5 e^{6 x}}{4}\right )+\frac {1}{6} \text {Li}_2\left (1-\frac {5 e^{6 x}}{4}\right )-5 x+x \log \left (1-\frac {5 e^{6 x}}{4}\right )-\frac {1}{6} \log \left (\frac {5 e^{6 x}}{4}\right ) \log \left (-\frac {5}{4-5 e^{6 x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2184
Rule 2190
Rule 2279
Rule 2282
Rule 2315
Rule 2391
Rule 2394
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-5+6 x+\frac {24 x}{-4+5 e^{6 x}}-\log \left (\frac {5}{-4+5 e^{6 x}}\right )\right ) \, dx\\ &=-5 x+3 x^2+24 \int \frac {x}{-4+5 e^{6 x}} \, dx-\int \log \left (\frac {5}{-4+5 e^{6 x}}\right ) \, dx\\ &=-5 x-\frac {1}{6} \operatorname {Subst}\left (\int \frac {\log \left (\frac {5}{-4+5 x}\right )}{x} \, dx,x,e^{6 x}\right )+30 \int \frac {e^{6 x} x}{-4+5 e^{6 x}} \, dx\\ &=-5 x-\frac {1}{6} \log \left (\frac {5 e^{6 x}}{4}\right ) \log \left (-\frac {5}{4-5 e^{6 x}}\right )+x \log \left (1-\frac {5 e^{6 x}}{4}\right )-\frac {5}{6} \operatorname {Subst}\left (\int \frac {\log \left (\frac {5 x}{4}\right )}{-4+5 x} \, dx,x,e^{6 x}\right )-\int \log \left (1-\frac {5 e^{6 x}}{4}\right ) \, dx\\ &=-5 x-\frac {1}{6} \log \left (\frac {5 e^{6 x}}{4}\right ) \log \left (-\frac {5}{4-5 e^{6 x}}\right )+x \log \left (1-\frac {5 e^{6 x}}{4}\right )+\frac {1}{6} \text {Li}_2\left (1-\frac {5 e^{6 x}}{4}\right )-\frac {1}{6} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {5 x}{4}\right )}{x} \, dx,x,e^{6 x}\right )\\ &=-5 x-\frac {1}{6} \log \left (\frac {5 e^{6 x}}{4}\right ) \log \left (-\frac {5}{4-5 e^{6 x}}\right )+x \log \left (1-\frac {5 e^{6 x}}{4}\right )+\frac {1}{6} \text {Li}_2\left (\frac {5 e^{6 x}}{4}\right )+\frac {1}{6} \text {Li}_2\left (1-\frac {5 e^{6 x}}{4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.10, size = 80, normalized size = 3.81 \begin {gather*} \frac {1}{6} \left (-30 x+18 x^2+6 x \log \left (1-\frac {4 e^{-6 x}}{5}\right )-\log \left (\frac {5 e^{6 x}}{4}\right ) \log \left (\frac {5}{-4+5 e^{6 x}}\right )-\text {Li}_2\left (\frac {4 e^{-6 x}}{5}\right )+\text {Li}_2\left (1-\frac {5 e^{6 x}}{4}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 20, normalized size = 0.95 \begin {gather*} -x \log \left (\frac {5 \, e^{6}}{5 \, e^{\left (6 \, x\right )} - 4}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 20, normalized size = 0.95 \begin {gather*} -x \log \left (\frac {5}{5 \, e^{\left (6 \, x\right )} - 4}\right ) - 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 14, normalized size = 0.67
method | result | size |
risch | \(x \ln \left ({\mathrm e}^{6 x}-\frac {4}{5}\right )-5 x\) | \(14\) |
norman | \(x -x \ln \left (\frac {5 \,{\mathrm e}^{6}}{5 \,{\mathrm e}^{6 x}-4}\right )\) | \(23\) |
default | \(\frac {\ln \left ({\mathrm e}^{6 x}\right )}{6}+\frac {\left (6 x -\ln \left (\frac {5 \,{\mathrm e}^{6 x}}{4}\right )\right ) \ln \left (1-\frac {5 \,{\mathrm e}^{6 x}}{4}\right )}{6}-\frac {\left (\ln \left (\frac {5 \,{\mathrm e}^{6}}{5 \,{\mathrm e}^{6 x}-4}\right )+\ln \left (5 \,{\mathrm e}^{6 x}-4\right )\right ) \ln \left ({\mathrm e}^{6 x}\right )}{6}+\frac {\ln \left (5 \,{\mathrm e}^{6 x}-4\right ) \ln \left (\frac {5 \,{\mathrm e}^{6 x}}{4}\right )}{6}\) | \(85\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 20, normalized size = 0.95 \begin {gather*} -x {\left (\log \relax (5) + 6\right )} + x \log \left (5 \, e^{\left (6 \, x\right )} - 4\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.76, size = 18, normalized size = 0.86 \begin {gather*} -x\,\left (\ln \relax (5)+\ln \left (\frac {1}{5\,{\mathrm {e}}^{6\,x}-4}\right )+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.81 \begin {gather*} - x \log {\left (\frac {5 e^{6}}{5 e^{6 x} - 4} \right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________