Optimal. Leaf size=26 \[ e^{e^x} \log \left (5 \left (x+\frac {1}{45} x^2 (x+\log (3)) \log (2 x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 9.42, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 25, number of rules used = 5, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6742, 6688, 2282, 2194, 2555} \begin {gather*} e^{e^x} \log \left (\frac {1}{9} x (x (x+\log (3)) \log (2 x)+45)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2282
Rule 2555
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{e^x} \left (45+x^2+x \log (3)+3 x^2 \log (2 x)+x \log (9) \log (2 x)\right )}{x \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}+e^{e^x+x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )\right ) \, dx\\ &=\int \frac {e^{e^x} \left (45+x^2+x \log (3)+3 x^2 \log (2 x)+x \log (9) \log (2 x)\right )}{x \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx+\int e^{e^x+x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right ) \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )-\int \frac {e^{e^x} \left (45+x^2+x \log (3)+x (3 x+\log (9)) \log (2 x)\right )}{x (45+x (x+\log (3)) \log (2 x))} \, dx+\int \left (\frac {e^{e^x} (3 x+\log (9))}{x (x+\log (3))}+\frac {e^{e^x} \left (x^3-45 \log (3)-x \left (90-\log ^2(3)\right )+x^2 \log (9)\right )}{x (x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}\right ) \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )+\int \frac {e^{e^x} (3 x+\log (9))}{x (x+\log (3))} \, dx+\int \frac {e^{e^x} \left (x^3-45 \log (3)-x \left (90-\log ^2(3)\right )+x^2 \log (9)\right )}{x (x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx-\int \left (\frac {e^{e^x} (3 x+\log (9))}{x (x+\log (3))}+\frac {e^{e^x} \left (x^3-45 \log (3)-x \left (90-\log ^2(3)\right )+x^2 \log (9)\right )}{x (x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}\right ) \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )-\int \frac {e^{e^x} (3 x+\log (9))}{x (x+\log (3))} \, dx+\int \left (\frac {e^{e^x}}{x+\log (3)}+\frac {e^{e^x} \log (9)}{x \log (3)}\right ) \, dx-\int \frac {e^{e^x} \left (x^3-45 \log (3)-x \left (90-\log ^2(3)\right )+x^2 \log (9)\right )}{x (x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx+\int \frac {e^{e^x} \left (x^3-45 \log (3)-x \left (90-\log ^2(3)\right )+x^2 \log (9)\right )}{x (x+\log (3)) (45+x (x+\log (3)) \log (2 x))} \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )+\frac {\log (9) \int \frac {e^{e^x}}{x} \, dx}{\log (3)}+\int \frac {e^{e^x}}{x+\log (3)} \, dx-\int \left (\frac {e^{e^x}}{x+\log (3)}+\frac {e^{e^x} \log (9)}{x \log (3)}\right ) \, dx-\int \frac {e^{e^x} \left (x^3-45 \log (3)-x \left (90-\log ^2(3)\right )+x^2 \log (9)\right )}{x (x+\log (3)) (45+x (x+\log (3)) \log (2 x))} \, dx+\int \left (-\frac {45 e^{e^x}}{x \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}+\frac {e^{e^x} x}{45+x^2 \log (2 x)+x \log (3) \log (2 x)}-\frac {e^{e^x} \log (3) \left (1-\frac {\log (9)}{\log (3)}\right )}{45+x^2 \log (2 x)+x \log (3) \log (2 x)}+\frac {e^{e^x} \left (-45+2 \log ^2(3)-\log (3) \log (9)\right )}{(x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}\right ) \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )-45 \int \frac {e^{e^x}}{x \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx+\log (3) \int \frac {e^{e^x}}{45+x^2 \log (2 x)+x \log (3) \log (2 x)} \, dx+\left (-45+2 \log ^2(3)-\log (3) \log (9)\right ) \int \frac {e^{e^x}}{(x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx+\int \frac {e^{e^x} x}{45+x^2 \log (2 x)+x \log (3) \log (2 x)} \, dx-\int \left (-\frac {45 e^{e^x}}{x \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}+\frac {e^{e^x} x}{45+x^2 \log (2 x)+x \log (3) \log (2 x)}-\frac {e^{e^x} \log (3) \left (1-\frac {\log (9)}{\log (3)}\right )}{45+x^2 \log (2 x)+x \log (3) \log (2 x)}+\frac {e^{e^x} \left (-45+2 \log ^2(3)-\log (3) \log (9)\right )}{(x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )}\right ) \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )+45 \int \frac {e^{e^x}}{x \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx-45 \int \frac {e^{e^x}}{x (45+x (x+\log (3)) \log (2 x))} \, dx-\log (3) \int \frac {e^{e^x}}{45+x^2 \log (2 x)+x \log (3) \log (2 x)} \, dx+\log (3) \int \frac {e^{e^x}}{45+x (x+\log (3)) \log (2 x)} \, dx-\left (-45+2 \log ^2(3)-\log (3) \log (9)\right ) \int \frac {e^{e^x}}{(x+\log (3)) \left (45+x^2 \log (2 x)+x \log (3) \log (2 x)\right )} \, dx+\left (-45+2 \log ^2(3)-\log (3) \log (9)\right ) \int \frac {e^{e^x}}{(x+\log (3)) (45+x (x+\log (3)) \log (2 x))} \, dx-\int \frac {e^{e^x} x}{45+x^2 \log (2 x)+x \log (3) \log (2 x)} \, dx+\int \frac {e^{e^x} x}{45+x (x+\log (3)) \log (2 x)} \, dx\\ &=e^{e^x} \log \left (\frac {1}{9} x (45+x (x+\log (3)) \log (2 x))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.37, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{e^x} \left (45+x^2+x \log (3)+\left (3 x^2+2 x \log (3)\right ) \log (2 x)\right )+e^{e^x} \left (45 e^x x+e^x \left (x^3+x^2 \log (3)\right ) \log (2 x)\right ) \log \left (\frac {1}{9} \left (45 x+\left (x^3+x^2 \log (3)\right ) \log (2 x)\right )\right )}{45 x+\left (x^3+x^2 \log (3)\right ) \log (2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 25, normalized size = 0.96 \begin {gather*} e^{\left (e^{x}\right )} \log \left (\frac {1}{9} \, {\left (x^{3} + x^{2} \log \relax (3)\right )} \log \left (2 \, x\right ) + 5 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 51, normalized size = 1.96 \begin {gather*} -{\left (2 \, e^{\left (x + e^{x}\right )} \log \relax (3) - e^{\left (x + e^{x}\right )} \log \left (x^{2} \log \left (2 \, x\right ) + x \log \relax (3) \log \left (2 \, x\right ) + 45\right ) - e^{\left (x + e^{x}\right )} \log \relax (x)\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (x^{2} \ln \relax (3)+x^{3}\right ) {\mathrm e}^{x} \ln \left (2 x \right )+45 \,{\mathrm e}^{x} x \right ) {\mathrm e}^{{\mathrm e}^{x}} \ln \left (\frac {\left (x^{2} \ln \relax (3)+x^{3}\right ) \ln \left (2 x \right )}{9}+5 x \right )+\left (\left (2 x \ln \relax (3)+3 x^{2}\right ) \ln \left (2 x \right )+x \ln \relax (3)+x^{2}+45\right ) {\mathrm e}^{{\mathrm e}^{x}}}{\left (x^{2} \ln \relax (3)+x^{3}\right ) \ln \left (2 x \right )+45 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 45, normalized size = 1.73 \begin {gather*} -{\left (2 \, \log \relax (3) - \log \relax (x)\right )} e^{\left (e^{x}\right )} + e^{\left (e^{x}\right )} \log \left (x^{2} \log \relax (2) + x \log \relax (3) \log \relax (2) + {\left (x^{2} + x \log \relax (3)\right )} \log \relax (x) + 45\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.17, size = 25, normalized size = 0.96 \begin {gather*} \ln \left (5\,x+\frac {\ln \left (2\,x\right )\,\left (x^3+\ln \relax (3)\,x^2\right )}{9}\right )\,{\mathrm {e}}^{{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________