Optimal. Leaf size=24 \[ \frac {4-\frac {e^{2 e^x}}{\log (4 x)}}{3 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 \log ^2(4 x)+e^{2 e^x} \left (1+\left (1-2 e^x x\right ) \log (4 x)\right )}{3 x^2 \log ^2(4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-4 \log ^2(4 x)+e^{2 e^x} \left (1+\left (1-2 e^x x\right ) \log (4 x)\right )}{x^2 \log ^2(4 x)} \, dx\\ &=\frac {1}{3} \int \left (-\frac {2 e^{2 e^x+x}}{x \log (4 x)}-\frac {-e^{2 e^x}-e^{2 e^x} \log (4 x)+4 \log ^2(4 x)}{x^2 \log ^2(4 x)}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {-e^{2 e^x}-e^{2 e^x} \log (4 x)+4 \log ^2(4 x)}{x^2 \log ^2(4 x)} \, dx\right )-\frac {2}{3} \int \frac {e^{2 e^x+x}}{x \log (4 x)} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {4}{x^2}-\frac {e^{2 e^x} (1+\log (4 x))}{x^2 \log ^2(4 x)}\right ) \, dx\right )-\frac {2}{3} \int \frac {e^{2 e^x+x}}{x \log (4 x)} \, dx\\ &=\frac {4}{3 x}+\frac {1}{3} \int \frac {e^{2 e^x} (1+\log (4 x))}{x^2 \log ^2(4 x)} \, dx-\frac {2}{3} \int \frac {e^{2 e^x+x}}{x \log (4 x)} \, dx\\ &=\frac {4}{3 x}+\frac {1}{3} \int \left (\frac {e^{2 e^x}}{x^2 \log ^2(4 x)}+\frac {e^{2 e^x}}{x^2 \log (4 x)}\right ) \, dx-\frac {2}{3} \int \frac {e^{2 e^x+x}}{x \log (4 x)} \, dx\\ &=\frac {4}{3 x}+\frac {1}{3} \int \frac {e^{2 e^x}}{x^2 \log ^2(4 x)} \, dx+\frac {1}{3} \int \frac {e^{2 e^x}}{x^2 \log (4 x)} \, dx-\frac {2}{3} \int \frac {e^{2 e^x+x}}{x \log (4 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 24, normalized size = 1.00 \begin {gather*} \frac {4-\frac {e^{2 e^x}}{\log (4 x)}}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 23, normalized size = 0.96 \begin {gather*} -\frac {e^{\left (2 \, e^{x}\right )} - 4 \, \log \left (4 \, x\right )}{3 \, x \log \left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 23, normalized size = 0.96 \begin {gather*} -\frac {e^{\left (2 \, e^{x}\right )} - 4 \, \log \left (4 \, x\right )}{3 \, x \log \left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.96
method | result | size |
risch | \(\frac {4}{3 x}-\frac {{\mathrm e}^{2 \,{\mathrm e}^{x}}}{3 \ln \left (4 x \right ) x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 25, normalized size = 1.04 \begin {gather*} -\frac {e^{\left (2 \, e^{x}\right )}}{3 \, {\left (2 \, x \log \relax (2) + x \log \relax (x)\right )}} + \frac {4}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.35, size = 22, normalized size = 0.92 \begin {gather*} \frac {4}{3\,x}-\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^x}}{3\,x\,\ln \left (4\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 19, normalized size = 0.79 \begin {gather*} - \frac {e^{2 e^{x}}}{3 x \log {\left (4 x \right )}} + \frac {4}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________