Optimal. Leaf size=29 \[ 8-2 x-e^{-4 \log ^2\left (-5+\frac {x^2}{3}\right )} \log \left (\frac {5 x}{2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.71, antiderivative size = 28, normalized size of antiderivative = 0.97, number of steps used = 4, number of rules used = 3, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {1593, 6725, 2288} \begin {gather*} -e^{-4 \log ^2\left (\frac {x^2}{3}-5\right )} \log \left (\frac {5 x}{2}\right )-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4 \log ^2\left (\frac {1}{3} \left (-15+x^2\right )\right )} \left (15-x^2+e^{4 \log ^2\left (\frac {1}{3} \left (-15+x^2\right )\right )} \left (30 x-2 x^3\right )+16 x^2 \log \left (\frac {5 x}{2}\right ) \log \left (\frac {1}{3} \left (-15+x^2\right )\right )\right )}{x \left (-15+x^2\right )} \, dx\\ &=\int \left (-2+\frac {e^{-4 \log ^2\left (-5+\frac {x^2}{3}\right )} \left (15-x^2+16 x^2 \log \left (\frac {5 x}{2}\right ) \log \left (-5+\frac {x^2}{3}\right )\right )}{x \left (-15+x^2\right )}\right ) \, dx\\ &=-2 x+\int \frac {e^{-4 \log ^2\left (-5+\frac {x^2}{3}\right )} \left (15-x^2+16 x^2 \log \left (\frac {5 x}{2}\right ) \log \left (-5+\frac {x^2}{3}\right )\right )}{x \left (-15+x^2\right )} \, dx\\ &=-2 x-e^{-4 \log ^2\left (-5+\frac {x^2}{3}\right )} \log \left (\frac {5 x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 28, normalized size = 0.97 \begin {gather*} -2 x-e^{-4 \log ^2\left (-5+\frac {x^2}{3}\right )} \log \left (\frac {5 x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 36, normalized size = 1.24 \begin {gather*} -{\left (2 \, x e^{\left (4 \, \log \left (\frac {1}{3} \, x^{2} - 5\right )^{2}\right )} + \log \left (\frac {5}{2} \, x\right )\right )} e^{\left (-4 \, \log \left (\frac {1}{3} \, x^{2} - 5\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (16 \, x^{2} \log \left (\frac {1}{3} \, x^{2} - 5\right ) \log \left (\frac {5}{2} \, x\right ) - x^{2} - 2 \, {\left (x^{3} - 15 \, x\right )} e^{\left (4 \, \log \left (\frac {1}{3} \, x^{2} - 5\right )^{2}\right )} + 15\right )} e^{\left (-4 \, \log \left (\frac {1}{3} \, x^{2} - 5\right )^{2}\right )}}{x^{3} - 15 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 24, normalized size = 0.83
method | result | size |
risch | \(-2 x -\ln \left (\frac {5 x}{2}\right ) {\mathrm e}^{-4 \ln \left (\frac {x^{2}}{3}-5\right )^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 63, normalized size = 2.17 \begin {gather*} -{\left (2 \, x e^{\left (4 \, \log \relax (3)^{2} + 4 \, \log \left (x^{2} - 15\right )^{2}\right )} + {\left (\log \relax (5) - \log \relax (2) + \log \relax (x)\right )} e^{\left (8 \, \log \relax (3) \log \left (x^{2} - 15\right )\right )}\right )} e^{\left (-4 \, \log \relax (3)^{2} - 4 \, \log \left (x^{2} - 15\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.31, size = 23, normalized size = 0.79 \begin {gather*} -2\,x-\ln \left (\frac {5\,x}{2}\right )\,{\mathrm {e}}^{-4\,{\ln \left (\frac {x^2}{3}-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________