Optimal. Leaf size=19 \[ x+2 \left (-4-e \left (16+e^x\right )+x\right ) \log (3+x) \]
________________________________________________________________________________________
Rubi [B] time = 0.38, antiderivative size = 47, normalized size of antiderivative = 2.47, number of steps used = 10, number of rules used = 6, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6741, 6742, 2288, 43, 2389, 2295} \begin {gather*} x+2 (x+3) \log (x+3)-2 (7+16 e) \log (x+3)-\frac {2 e^{x+1} (x \log (x+3)+3 \log (x+3))}{x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2288
Rule 2295
Rule 2389
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 e^{1+x}-5 \left (1+\frac {32 e}{5}\right )+3 x+\left (6+e^{1+x} (-6-2 x)+2 x\right ) \log (3+x)}{3+x} \, dx\\ &=\int \left (-\frac {2 e^{1+x} (1+3 \log (3+x)+x \log (3+x))}{3+x}+\frac {-5 \left (1+\frac {32 e}{5}\right )+3 x+6 \log (3+x)+2 x \log (3+x)}{3+x}\right ) \, dx\\ &=-\left (2 \int \frac {e^{1+x} (1+3 \log (3+x)+x \log (3+x))}{3+x} \, dx\right )+\int \frac {-5 \left (1+\frac {32 e}{5}\right )+3 x+6 \log (3+x)+2 x \log (3+x)}{3+x} \, dx\\ &=-\frac {2 e^{1+x} (3 \log (3+x)+x \log (3+x))}{3+x}+\int \left (\frac {-5-32 e+3 x}{3+x}+2 \log (3+x)\right ) \, dx\\ &=-\frac {2 e^{1+x} (3 \log (3+x)+x \log (3+x))}{3+x}+2 \int \log (3+x) \, dx+\int \frac {-5-32 e+3 x}{3+x} \, dx\\ &=-\frac {2 e^{1+x} (3 \log (3+x)+x \log (3+x))}{3+x}+2 \operatorname {Subst}(\int \log (x) \, dx,x,3+x)+\int \left (3-\frac {2 (7+16 e)}{3+x}\right ) \, dx\\ &=x-2 (7+16 e) \log (3+x)+2 (3+x) \log (3+x)-\frac {2 e^{1+x} (3 \log (3+x)+x \log (3+x))}{3+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 21, normalized size = 1.11 \begin {gather*} x-2 \left (4+16 e+e^{1+x}-x\right ) \log (3+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 21, normalized size = 1.11 \begin {gather*} 2 \, {\left (x - 16 \, e - e^{\left (x + 1\right )} - 4\right )} \log \left (x + 3\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 33, normalized size = 1.74 \begin {gather*} 2 \, x \log \left (x + 3\right ) - 32 \, e \log \left (x + 3\right ) - 2 \, e^{\left (x + 1\right )} \log \left (x + 3\right ) + x - 8 \, \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 31, normalized size = 1.63
method | result | size |
norman | \(x +\left (-8-32 \,{\mathrm e}\right ) \ln \left (3+x \right )+2 x \ln \left (3+x \right )-2 \,{\mathrm e} \,{\mathrm e}^{x} \ln \left (3+x \right )\) | \(31\) |
risch | \(\left (-2 \,{\mathrm e}^{x +1}+2 x \right ) \ln \left (3+x \right )-32 \,{\mathrm e} \ln \left (3+x \right )-8 \ln \left (3+x \right )+x\) | \(32\) |
default | \(-2 \,{\mathrm e} \,{\mathrm e}^{x} \ln \left (3+x \right )+x -32 \,{\mathrm e} \ln \left (3+x \right )-14 \ln \left (3+x \right )+2 \left (3+x \right ) \ln \left (3+x \right )-6\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, e^{\left (-2\right )} E_{1}\left (-x - 3\right ) + 2 \, {\left (x - 3 \, \log \left (x + 3\right )\right )} \log \left (x + 3\right ) - 32 \, e \log \left (x + 3\right ) - 2 \, e^{\left (x + 1\right )} \log \left (x + 3\right ) + 6 \, \log \left (x + 3\right )^{2} + x + 2 \, \int \frac {e^{\left (x + 1\right )}}{x + 3}\,{d x} - 8 \, \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.88, size = 33, normalized size = 1.74 \begin {gather*} x-8\,\ln \left (x+3\right )-32\,\ln \left (x+3\right )\,\mathrm {e}+2\,x\,\ln \left (x+3\right )-2\,\ln \left (x+3\right )\,{\mathrm {e}}^{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 36, normalized size = 1.89 \begin {gather*} 2 x \log {\left (x + 3 \right )} + x - 2 e e^{x} \log {\left (x + 3 \right )} - 8 \left (1 + 4 e\right ) \log {\left (x + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________