Optimal. Leaf size=22 \[ \frac {16}{\left (-3+2 e^{2 x+e \left (e^2+\log (5)\right )}\right )^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 6, number of rules used = 4, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 2274, 2282, 32} \begin {gather*} \frac {16}{\left (3-2\ 5^e e^{2 x+e^3}\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 2274
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (256 \int \frac {e^{e^3+2 x+e \log (5)}}{-243+810 e^{e^3+2 x+e \log (5)}-1080 e^{2 e^3+4 x+2 e \log (5)}+720 e^{3 e^3+6 x+3 e \log (5)}-240 e^{4 e^3+8 x+4 e \log (5)}+32 e^{5 e^3+10 x+5 e \log (5)}} \, dx\right )\\ &=-\left (256 \int \frac {5^e e^{e^3+2 x}}{-243+810 e^{e^3+2 x+e \log (5)}-1080 e^{2 e^3+4 x+2 e \log (5)}+720 e^{3 e^3+6 x+3 e \log (5)}-240 e^{4 e^3+8 x+4 e \log (5)}+32 e^{5 e^3+10 x+5 e \log (5)}} \, dx\right )\\ &=-\left (\left (256\ 5^e\right ) \int \frac {e^{e^3+2 x}}{-243+810 e^{e^3+2 x+e \log (5)}-1080 e^{2 e^3+4 x+2 e \log (5)}+720 e^{3 e^3+6 x+3 e \log (5)}-240 e^{4 e^3+8 x+4 e \log (5)}+32 e^{5 e^3+10 x+5 e \log (5)}} \, dx\right )\\ &=-\left (\left (128\ 5^e\right ) \operatorname {Subst}\left (\int \frac {e^{e^3}}{\left (-3+2\ 5^e e^{e^3} x\right )^5} \, dx,x,e^{2 x}\right )\right )\\ &=-\left (\left (128\ 5^e e^{e^3}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-3+2\ 5^e e^{e^3} x\right )^5} \, dx,x,e^{2 x}\right )\right )\\ &=\frac {16}{\left (3-2\ 5^e e^{e^3+2 x}\right )^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 20, normalized size = 0.91 \begin {gather*} \frac {16}{\left (-3+2\ 5^e e^{e^3+2 x}\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 71, normalized size = 3.23 \begin {gather*} \frac {16}{16 \, e^{\left (4 \, e \log \relax (5) + 8 \, x + 4 \, e^{3}\right )} - 96 \, e^{\left (3 \, e \log \relax (5) + 6 \, x + 3 \, e^{3}\right )} + 216 \, e^{\left (2 \, e \log \relax (5) + 4 \, x + 2 \, e^{3}\right )} - 216 \, e^{\left (e \log \relax (5) + 2 \, x + e^{3}\right )} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 19, normalized size = 0.86 \begin {gather*} \frac {16}{{\left (2 \cdot 5^{e} e^{\left (2 \, x + e^{3}\right )} - 3\right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.91
method | result | size |
risch | \(\frac {16}{\left (2 \,5^{{\mathrm e}} {\mathrm e}^{2 x +{\mathrm e}^{3}}-3\right )^{4}}\) | \(20\) |
derivativedivides | \(\frac {16}{\left (2 \,{\mathrm e}^{{\mathrm e} \ln \relax (5)+{\mathrm e} \,{\mathrm e}^{2}+2 x}-3\right )^{4}}\) | \(24\) |
default | \(\frac {16}{\left (2 \,{\mathrm e}^{{\mathrm e} \ln \relax (5)+{\mathrm e} \,{\mathrm e}^{2}+2 x}-3\right )^{4}}\) | \(24\) |
norman | \(\frac {16}{\left (2 \,{\mathrm e}^{{\mathrm e} \ln \relax (5)+{\mathrm e} \,{\mathrm e}^{2}+2 x}-3\right )^{4}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 71, normalized size = 3.23 \begin {gather*} \frac {16}{16 \, e^{\left (4 \, e \log \relax (5) + 8 \, x + 4 \, e^{3}\right )} - 96 \, e^{\left (3 \, e \log \relax (5) + 6 \, x + 3 \, e^{3}\right )} + 216 \, e^{\left (2 \, e \log \relax (5) + 4 \, x + 2 \, e^{3}\right )} - 216 \, e^{\left (e \log \relax (5) + 2 \, x + e^{3}\right )} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.36, size = 86, normalized size = 3.91 \begin {gather*} -\frac {\frac {128\,5^{2\,\mathrm {e}}\,{\mathrm {e}}^{4\,x+2\,{\mathrm {e}}^3}}{3}-\frac {128\,5^{\mathrm {e}}\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^3}\,\left (12\,5^{2\,\mathrm {e}}\,{\mathrm {e}}^{4\,x+2\,{\mathrm {e}}^3}-2\,5^{3\,\mathrm {e}}\,{\mathrm {e}}^{6\,x+3\,{\mathrm {e}}^3}+27\right )}{81}}{{\left (2\,5^{\mathrm {e}}\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^3}-3\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 73, normalized size = 3.32 \begin {gather*} \frac {16}{- 216 \cdot 5^{e} e^{2 x + e^{3}} + 216 \cdot 5^{2 e} e^{4 x + 2 e^{3}} - 96 \cdot 5^{3 e} e^{6 x + 3 e^{3}} + 16 \cdot 5^{4 e} e^{8 x + 4 e^{3}} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________