Optimal. Leaf size=27 \[ -\frac {\frac {4}{e^8}+x}{x}+x^2 \left (i \pi +\log \left (\frac {59}{16}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 0.85, number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 14} \begin {gather*} -\frac {4}{e^8 x}+x^2 \left (\log \left (\frac {59}{16}\right )+i \pi \right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {4+2 e^8 x^3 \left (i \pi +\log \left (\frac {59}{16}\right )\right )}{x^2} \, dx}{e^8}\\ &=\frac {\int \left (\frac {4}{x^2}+2 e^8 x \left (i \pi +\log \left (\frac {59}{16}\right )\right )\right ) \, dx}{e^8}\\ &=-\frac {4}{e^8 x}+x^2 \left (i \pi +\log \left (\frac {59}{16}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.85 \begin {gather*} -\frac {4}{e^8 x}+x^2 \left (i \pi +\log \left (\frac {59}{16}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 24, normalized size = 0.89 \begin {gather*} \frac {{\left (i \, \pi x^{3} e^{8} + x^{3} e^{8} \log \left (\frac {59}{16}\right ) - 4\right )} e^{\left (-8\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 27, normalized size = 1.00 \begin {gather*} -{\left (-i \, \pi x^{2} e^{8} - x^{2} e^{8} \log \left (\frac {59}{16}\right ) + \frac {4}{x}\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 27, normalized size = 1.00
method | result | size |
default | \(2 \,{\mathrm e}^{-8} \left (\frac {{\mathrm e}^{8} \left (\ln \left (\frac {59}{16}\right )+i \pi \right ) x^{2}}{2}-\frac {2}{x}\right )\) | \(27\) |
risch | \(i \pi \,x^{2}-4 x^{2} \ln \relax (2)+\ln \left (59\right ) x^{2}-\frac {4 \,{\mathrm e}^{-8}}{x}\) | \(29\) |
norman | \(\frac {\left ({\mathrm e}^{4} \left (\ln \left (59\right )-4 \ln \relax (2)+i \pi \right ) x^{3}-4 \,{\mathrm e}^{-4}\right ) {\mathrm e}^{-4}}{x}\) | \(33\) |
gosper | \(\frac {\left (-i \ln \left (\frac {59}{16}\right ) x^{3} {\mathrm e}^{8}+\pi \,x^{3} {\mathrm e}^{8}+4 i\right ) \left (i \pi \,x^{3} {\mathrm e}^{8}+\ln \left (\frac {59}{16}\right ) x^{3} {\mathrm e}^{8}+2\right ) {\mathrm e}^{-8}}{x \left (-i \ln \left (\frac {59}{16}\right ) x^{3} {\mathrm e}^{8}+\pi \,x^{3} {\mathrm e}^{8}-2 i\right )}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 26, normalized size = 0.96 \begin {gather*} -{\left ({\left (-i \, \pi e^{8} - e^{8} \log \left (\frac {59}{16}\right )\right )} x^{2} + \frac {4}{x}\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.05, size = 19, normalized size = 0.70 \begin {gather*} -\frac {4\,{\mathrm {e}}^{-8}}{x}+x^2\,\left (\ln \left (\frac {59}{16}\right )+\Pi \,1{}\mathrm {i}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 32, normalized size = 1.19 \begin {gather*} - \frac {- x^{2} \left (- 4 e^{8} \log {\relax (2 )} + e^{8} \log {\left (59 \right )} + i \pi e^{8}\right ) + \frac {4}{x}}{e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________