Optimal. Leaf size=25 \[ 3 x \left (-1+x^2+\log (-1+x)\right ) \left (2+\left (-x+\log ^2(\log (5))\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 358, normalized size of antiderivative = 14.32, number of steps used = 22, number of rules used = 6, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {6742, 43, 2417, 2395, 2389, 2295} \begin {gather*} 3 x^5+\frac {15 x^4}{4}-\frac {3}{4} x^4 \left (5+8 \log ^2(\log (5))\right )+4 x^3-x^3 \left (5+8 \log ^2(\log (5))\right )+x^3 \left (4+3 \log ^4(\log (5))+8 \log ^2(\log (5))\right )+3 x^3 \log (x-1)+6 x^2-\frac {3}{2} x^2 \left (5+8 \log ^2(\log (5))\right )-6 x^2 \log ^2(\log (5)) \log (x-1)+3 x^2 \log ^2(\log (5))+\frac {3}{2} x^2 \left (4+3 \log ^4(\log (5))+8 \log ^2(\log (5))\right )-\frac {3}{2} x^2 \left (3+3 \log ^4(\log (5))-2 \log ^2(\log (5))\right )+12 x-3 x \left (2+\log ^4(\log (5))\right )+3 \left (2+\log ^4(\log (5))\right ) \log (1-x)-3 (1-x) \left (2+\log ^4(\log (5))\right ) \log (x-1)-3 x \left (5+8 \log ^2(\log (5))\right )-6 x \log ^2(\log (5))-3 \left (5+8 \log ^2(\log (5))\right ) \log (1-x)-6 \log ^2(\log (5)) \log (1-x)+3 x \left (4+3 \log ^4(\log (5))+8 \log ^2(\log (5))\right )-3 x \left (3+3 \log ^4(\log (5))-2 \log ^2(\log (5))\right )+3 \left (4+3 \log ^4(\log (5))+8 \log ^2(\log (5))\right ) \log (1-x)-3 \left (3+3 \log ^4(\log (5))-2 \log ^2(\log (5))\right ) \log (1-x)+12 \log (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2295
Rule 2389
Rule 2395
Rule 2417
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {15 x^5}{-1+x}-\frac {12 x \log ^2(\log (5))}{-1+x}-\frac {15 x^4 \left (1+\frac {8}{5} \log ^2(\log (5))\right )}{-1+x}+\frac {6 \left (1+\frac {1}{2} \log ^4(\log (5))\right )}{-1+x}+\frac {12 x^3 \left (1+2 \log ^2(\log (5))+\frac {3}{4} \log ^4(\log (5))\right )}{-1+x}-\frac {9 x^2 \left (1-\frac {2}{3} \log ^2(\log (5))+\log ^4(\log (5))\right )}{-1+x}+3 \log (-1+x) \left (2+3 x^2-4 x \log ^2(\log (5))+\log ^4(\log (5))\right )\right ) \, dx\\ &=3 \log (1-x) \left (2+\log ^4(\log (5))\right )+3 \int \log (-1+x) \left (2+3 x^2-4 x \log ^2(\log (5))+\log ^4(\log (5))\right ) \, dx+15 \int \frac {x^5}{-1+x} \, dx-\left (12 \log ^2(\log (5))\right ) \int \frac {x}{-1+x} \, dx-\left (3 \left (5+8 \log ^2(\log (5))\right )\right ) \int \frac {x^4}{-1+x} \, dx-\left (3 \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )\right ) \int \frac {x^2}{-1+x} \, dx+\left (3 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )\right ) \int \frac {x^3}{-1+x} \, dx\\ &=3 \log (1-x) \left (2+\log ^4(\log (5))\right )+3 \int \left (3 x^2 \log (-1+x)-4 x \log (-1+x) \log ^2(\log (5))+2 \log (-1+x) \left (1+\frac {1}{2} \log ^4(\log (5))\right )\right ) \, dx+15 \int \left (1+\frac {1}{-1+x}+x+x^2+x^3+x^4\right ) \, dx-\left (12 \log ^2(\log (5))\right ) \int \left (1+\frac {1}{-1+x}\right ) \, dx-\left (3 \left (5+8 \log ^2(\log (5))\right )\right ) \int \left (1+\frac {1}{-1+x}+x+x^2+x^3\right ) \, dx-\left (3 \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )\right ) \int \left (1+\frac {1}{-1+x}+x\right ) \, dx+\left (3 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )\right ) \int \left (1+\frac {1}{-1+x}+x+x^2\right ) \, dx\\ &=15 x+\frac {15 x^2}{2}+5 x^3+\frac {15 x^4}{4}+3 x^5+15 \log (1-x)-12 x \log ^2(\log (5))-12 \log (1-x) \log ^2(\log (5))-3 x \left (5+8 \log ^2(\log (5))\right )-\frac {3}{2} x^2 \left (5+8 \log ^2(\log (5))\right )-x^3 \left (5+8 \log ^2(\log (5))\right )-\frac {3}{4} x^4 \left (5+8 \log ^2(\log (5))\right )-3 \log (1-x) \left (5+8 \log ^2(\log (5))\right )+3 \log (1-x) \left (2+\log ^4(\log (5))\right )-3 x \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-\frac {3}{2} x^2 \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-3 \log (1-x) \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 x \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+\frac {3}{2} x^2 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+x^3 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 \log (1-x) \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+9 \int x^2 \log (-1+x) \, dx-\left (12 \log ^2(\log (5))\right ) \int x \log (-1+x) \, dx+\left (3 \left (2+\log ^4(\log (5))\right )\right ) \int \log (-1+x) \, dx\\ &=15 x+\frac {15 x^2}{2}+5 x^3+\frac {15 x^4}{4}+3 x^5+15 \log (1-x)+3 x^3 \log (-1+x)-12 x \log ^2(\log (5))-12 \log (1-x) \log ^2(\log (5))-6 x^2 \log (-1+x) \log ^2(\log (5))-3 x \left (5+8 \log ^2(\log (5))\right )-\frac {3}{2} x^2 \left (5+8 \log ^2(\log (5))\right )-x^3 \left (5+8 \log ^2(\log (5))\right )-\frac {3}{4} x^4 \left (5+8 \log ^2(\log (5))\right )-3 \log (1-x) \left (5+8 \log ^2(\log (5))\right )+3 \log (1-x) \left (2+\log ^4(\log (5))\right )-3 x \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-\frac {3}{2} x^2 \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-3 \log (1-x) \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 x \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+\frac {3}{2} x^2 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+x^3 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 \log (1-x) \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-3 \int \frac {x^3}{-1+x} \, dx+\left (6 \log ^2(\log (5))\right ) \int \frac {x^2}{-1+x} \, dx+\left (3 \left (2+\log ^4(\log (5))\right )\right ) \operatorname {Subst}(\int \log (x) \, dx,x,-1+x)\\ &=15 x+\frac {15 x^2}{2}+5 x^3+\frac {15 x^4}{4}+3 x^5+15 \log (1-x)+3 x^3 \log (-1+x)-12 x \log ^2(\log (5))-12 \log (1-x) \log ^2(\log (5))-6 x^2 \log (-1+x) \log ^2(\log (5))-3 x \left (5+8 \log ^2(\log (5))\right )-\frac {3}{2} x^2 \left (5+8 \log ^2(\log (5))\right )-x^3 \left (5+8 \log ^2(\log (5))\right )-\frac {3}{4} x^4 \left (5+8 \log ^2(\log (5))\right )-3 \log (1-x) \left (5+8 \log ^2(\log (5))\right )-3 x \left (2+\log ^4(\log (5))\right )+3 \log (1-x) \left (2+\log ^4(\log (5))\right )-3 (1-x) \log (-1+x) \left (2+\log ^4(\log (5))\right )-3 x \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-\frac {3}{2} x^2 \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-3 \log (1-x) \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 x \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+\frac {3}{2} x^2 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+x^3 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 \log (1-x) \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-3 \int \left (1+\frac {1}{-1+x}+x+x^2\right ) \, dx+\left (6 \log ^2(\log (5))\right ) \int \left (1+\frac {1}{-1+x}+x\right ) \, dx\\ &=12 x+6 x^2+4 x^3+\frac {15 x^4}{4}+3 x^5+12 \log (1-x)+3 x^3 \log (-1+x)-6 x \log ^2(\log (5))+3 x^2 \log ^2(\log (5))-6 \log (1-x) \log ^2(\log (5))-6 x^2 \log (-1+x) \log ^2(\log (5))-3 x \left (5+8 \log ^2(\log (5))\right )-\frac {3}{2} x^2 \left (5+8 \log ^2(\log (5))\right )-x^3 \left (5+8 \log ^2(\log (5))\right )-\frac {3}{4} x^4 \left (5+8 \log ^2(\log (5))\right )-3 \log (1-x) \left (5+8 \log ^2(\log (5))\right )-3 x \left (2+\log ^4(\log (5))\right )+3 \log (1-x) \left (2+\log ^4(\log (5))\right )-3 (1-x) \log (-1+x) \left (2+\log ^4(\log (5))\right )-3 x \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-\frac {3}{2} x^2 \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )-3 \log (1-x) \left (3-2 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 x \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+\frac {3}{2} x^2 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+x^3 \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )+3 \log (1-x) \left (4+8 \log ^2(\log (5))+3 \log ^4(\log (5))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 30, normalized size = 1.20 \begin {gather*} 3 x \left (-1+x^2+\log (-1+x)\right ) \left (2+x^2-2 x \log ^2(\log (5))+\log ^4(\log (5))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 71, normalized size = 2.84 \begin {gather*} 3 \, x^{5} + 3 \, {\left (x^{3} + x \log \left (x - 1\right ) - x\right )} \log \left (\log \relax (5)\right )^{4} + 3 \, x^{3} - 6 \, {\left (x^{4} + x^{2} \log \left (x - 1\right ) - x^{2}\right )} \log \left (\log \relax (5)\right )^{2} + 3 \, {\left (x^{3} + 2 \, x\right )} \log \left (x - 1\right ) - 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 80, normalized size = 3.20 \begin {gather*} -6 \, x^{4} \log \left (\log \relax (5)\right )^{2} + 3 \, x^{5} + 3 \, {\left (\log \left (\log \relax (5)\right )^{4} + 1\right )} x^{3} + 6 \, x^{2} \log \left (\log \relax (5)\right )^{2} - 3 \, {\left (\log \left (\log \relax (5)\right )^{4} + 2\right )} x - 3 \, {\left (2 \, x^{2} \log \left (\log \relax (5)\right )^{2} - x^{3} - {\left (\log \left (\log \relax (5)\right )^{4} + 2\right )} x\right )} \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 85, normalized size = 3.40
method | result | size |
risch | \(\left (3 \ln \left (\ln \relax (5)\right )^{4} x -6 x^{2} \ln \left (\ln \relax (5)\right )^{2}+3 x^{3}+6 x \right ) \ln \left (x -1\right )+3 \ln \left (\ln \relax (5)\right )^{4} x^{3}-6 \ln \left (\ln \relax (5)\right )^{2} x^{4}-3 \ln \left (\ln \relax (5)\right )^{4} x +3 x^{5}+6 x^{2} \ln \left (\ln \relax (5)\right )^{2}+3 x^{3}-6 x\) | \(85\) |
norman | \(\left (-6-3 \ln \left (\ln \relax (5)\right )^{4}\right ) x +\left (3+3 \ln \left (\ln \relax (5)\right )^{4}\right ) x^{3}+\left (3 \ln \left (\ln \relax (5)\right )^{4}+6\right ) x \ln \left (x -1\right )+3 x^{5}+6 x^{2} \ln \left (\ln \relax (5)\right )^{2}+3 \ln \left (x -1\right ) x^{3}-6 \ln \left (\ln \relax (5)\right )^{2} x^{4}-6 \ln \left (x -1\right ) \ln \left (\ln \relax (5)\right )^{2} x^{2}\) | \(89\) |
derivativedivides | \(3 \ln \left (\ln \relax (5)\right )^{4} \left (x -1\right )^{3}+3 \ln \left (\ln \relax (5)\right )^{4} \left (\left (x -1\right ) \ln \left (x -1\right )-x +1\right )+9 \ln \left (\ln \relax (5)\right )^{4} \left (x -1\right )^{2}-6 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )^{4}-12 \ln \left (\ln \relax (5)\right )^{2} \left (\frac {\ln \left (x -1\right ) \left (x -1\right )^{2}}{2}-\frac {\left (x -1\right )^{2}}{4}\right )+9 \ln \left (\ln \relax (5)\right )^{4} \left (x -1\right )-24 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )^{3}+3 \left (x -1\right )^{5}-12 \ln \left (\ln \relax (5)\right )^{2} \left (\left (x -1\right ) \ln \left (x -1\right )-x +1\right )+3 \ln \left (x -1\right ) \left (x -1\right )^{3}+33 \left (x -1\right )^{3}+3 \ln \left (x -1\right ) \ln \left (\ln \relax (5)\right )^{4}-33 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )^{2}+15 \left (x -1\right )^{4}+9 \ln \left (x -1\right ) \left (x -1\right )^{2}+39 \left (x -1\right )^{2}-24 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )+15 \left (x -1\right ) \ln \left (x -1\right )+18 x -18-6 \ln \left (x -1\right ) \ln \left (\ln \relax (5)\right )^{2}+9 \ln \left (x -1\right )\) | \(239\) |
default | \(3 \ln \left (\ln \relax (5)\right )^{4} \left (x -1\right )^{3}+3 \ln \left (\ln \relax (5)\right )^{4} \left (\left (x -1\right ) \ln \left (x -1\right )-x +1\right )+9 \ln \left (\ln \relax (5)\right )^{4} \left (x -1\right )^{2}-6 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )^{4}-12 \ln \left (\ln \relax (5)\right )^{2} \left (\frac {\ln \left (x -1\right ) \left (x -1\right )^{2}}{2}-\frac {\left (x -1\right )^{2}}{4}\right )+9 \ln \left (\ln \relax (5)\right )^{4} \left (x -1\right )-24 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )^{3}+3 \left (x -1\right )^{5}-12 \ln \left (\ln \relax (5)\right )^{2} \left (\left (x -1\right ) \ln \left (x -1\right )-x +1\right )+3 \ln \left (x -1\right ) \left (x -1\right )^{3}+33 \left (x -1\right )^{3}+3 \ln \left (x -1\right ) \ln \left (\ln \relax (5)\right )^{4}-33 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )^{2}+15 \left (x -1\right )^{4}+9 \ln \left (x -1\right ) \left (x -1\right )^{2}+39 \left (x -1\right )^{2}-24 \ln \left (\ln \relax (5)\right )^{2} \left (x -1\right )+15 \left (x -1\right ) \ln \left (x -1\right )+18 x -18-6 \ln \left (x -1\right ) \ln \left (\ln \relax (5)\right )^{2}+9 \ln \left (x -1\right )\) | \(239\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 374, normalized size = 14.96 \begin {gather*} 3 \, {\left (x + \log \left (x - 1\right )\right )} \log \left (x - 1\right ) \log \left (\log \relax (5)\right )^{4} - \frac {3}{2} \, \log \left (x - 1\right )^{2} \log \left (\log \relax (5)\right )^{4} + 3 \, x^{5} + \frac {3}{2} \, {\left (2 \, x^{3} + 3 \, x^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{4} - \frac {9}{2} \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{4} - \frac {3}{2} \, {\left (\log \left (x - 1\right )^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{4} + 3 \, \log \left (x - 1\right ) \log \left (\log \relax (5)\right )^{4} - 6 \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (x - 1\right ) \log \left (\log \relax (5)\right )^{2} + 12 \, {\left (x + \log \left (x - 1\right )\right )} \log \left (x - 1\right ) \log \left (\log \relax (5)\right )^{2} + 3 \, x^{3} - 2 \, {\left (3 \, x^{4} + 4 \, x^{3} + 6 \, x^{2} + 12 \, x + 12 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{2} + 4 \, {\left (2 \, x^{3} + 3 \, x^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{2} + 3 \, {\left (x^{2} + 2 \, \log \left (x - 1\right )^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{2} + 3 \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{2} - 6 \, {\left (\log \left (x - 1\right )^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{2} - 12 \, {\left (x + \log \left (x - 1\right )\right )} \log \left (\log \relax (5)\right )^{2} + \frac {3}{2} \, {\left (2 \, x^{3} + 3 \, x^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \left (x - 1\right ) - \frac {9}{2} \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (x - 1\right ) + 6 \, {\left (x + \log \left (x - 1\right )\right )} \log \left (x - 1\right ) - 6 \, \log \left (x - 1\right )^{2} - 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 30, normalized size = 1.20 \begin {gather*} 3\,x\,\left (\ln \left (x-1\right )+x^2-1\right )\,\left (x^2-2\,{\ln \left (\ln \relax (5)\right )}^2\,x+{\ln \left (\ln \relax (5)\right )}^4+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 90, normalized size = 3.60 \begin {gather*} 3 x^{5} - 6 x^{4} \log {\left (\log {\relax (5 )} \right )}^{2} + x^{3} \left (3 \log {\left (\log {\relax (5 )} \right )}^{4} + 3\right ) + 6 x^{2} \log {\left (\log {\relax (5 )} \right )}^{2} + x \left (-6 - 3 \log {\left (\log {\relax (5 )} \right )}^{4}\right ) + \left (3 x^{3} - 6 x^{2} \log {\left (\log {\relax (5 )} \right )}^{2} + 3 x \log {\left (\log {\relax (5 )} \right )}^{4} + 6 x\right ) \log {\left (x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________