Optimal. Leaf size=31 \[ \log (5) \left (x-x^2-\frac {1}{\log \left (\left (e^2-\frac {2-x}{x}\right )^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.50, antiderivative size = 35, normalized size of antiderivative = 1.13, number of steps used = 8, number of rules used = 6, integrand size = 122, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {6, 1593, 6688, 12, 2516, 2505} \begin {gather*} x^2 (-\log (5))-\frac {\log (5)}{\log \left (\frac {\left (2-\left (1+e^2\right ) x\right )^2}{x^2}\right )}+x \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1593
Rule 2505
Rule 2516
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \log (5)+\left (-2 x+5 x^2-2 x^3+e^2 \left (x^2-2 x^3\right )\right ) \log (5) \log ^2\left (\frac {4-4 x+x^2+e^4 x^2+e^2 \left (-4 x+2 x^2\right )}{x^2}\right )}{\left (-2 x+\left (1+e^2\right ) x^2\right ) \log ^2\left (\frac {4-4 x+x^2+e^4 x^2+e^2 \left (-4 x+2 x^2\right )}{x^2}\right )} \, dx\\ &=\int \frac {4 \log (5)+\left (-2 x+5 x^2-2 x^3+e^2 \left (x^2-2 x^3\right )\right ) \log (5) \log ^2\left (\frac {4-4 x+x^2+e^4 x^2+e^2 \left (-4 x+2 x^2\right )}{x^2}\right )}{x \left (-2+\left (1+e^2\right ) x\right ) \log ^2\left (\frac {4-4 x+x^2+e^4 x^2+e^2 \left (-4 x+2 x^2\right )}{x^2}\right )} \, dx\\ &=\int \log (5) \left (1-2 x+\frac {4}{x \left (-2+x+e^2 x\right ) \log ^2\left (\frac {\left (-2+x+e^2 x\right )^2}{x^2}\right )}\right ) \, dx\\ &=\log (5) \int \left (1-2 x+\frac {4}{x \left (-2+x+e^2 x\right ) \log ^2\left (\frac {\left (-2+x+e^2 x\right )^2}{x^2}\right )}\right ) \, dx\\ &=x \log (5)-x^2 \log (5)+(4 \log (5)) \int \frac {1}{x \left (-2+x+e^2 x\right ) \log ^2\left (\frac {\left (-2+x+e^2 x\right )^2}{x^2}\right )} \, dx\\ &=x \log (5)-x^2 \log (5)+(4 \log (5)) \int \frac {1}{x \left (-2+\left (1+e^2\right ) x\right ) \log ^2\left (\frac {\left (-2+x+e^2 x\right )^2}{x^2}\right )} \, dx\\ &=x \log (5)-x^2 \log (5)+(4 \log (5)) \int \frac {1}{x \left (-2+\left (1+e^2\right ) x\right ) \log ^2\left (\frac {\left (-2+\left (1+e^2\right ) x\right )^2}{x^2}\right )} \, dx\\ &=x \log (5)-x^2 \log (5)-\frac {\log (5)}{\log \left (\frac {\left (2-\left (1+e^2\right ) x\right )^2}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 0.94 \begin {gather*} \log (5) \left (x-x^2-\frac {1}{\log \left (\frac {\left (-2+x+e^2 x\right )^2}{x^2}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 77, normalized size = 2.48 \begin {gather*} -\frac {{\left (x^{2} - x\right )} \log \relax (5) \log \left (\frac {x^{2} e^{4} + x^{2} + 2 \, {\left (x^{2} - 2 \, x\right )} e^{2} - 4 \, x + 4}{x^{2}}\right ) + \log \relax (5)}{\log \left (\frac {x^{2} e^{4} + x^{2} + 2 \, {\left (x^{2} - 2 \, x\right )} e^{2} - 4 \, x + 4}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.21, size = 125, normalized size = 4.03 \begin {gather*} -\frac {x^{2} \log \relax (5) \log \left (x^{2} e^{4} + 2 \, x^{2} e^{2} + x^{2} - 4 \, x e^{2} - 4 \, x + 4\right ) - x^{2} \log \relax (5) \log \left (x^{2}\right ) - x \log \relax (5) \log \left (x^{2} e^{4} + 2 \, x^{2} e^{2} + x^{2} - 4 \, x e^{2} - 4 \, x + 4\right ) + x \log \relax (5) \log \left (x^{2}\right ) + \log \relax (5)}{\log \left (x^{2} e^{4} + 2 \, x^{2} e^{2} + x^{2} - 4 \, x e^{2} - 4 \, x + 4\right ) - \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 42, normalized size = 1.35
method | result | size |
derivativedivides | \(-\ln \relax (5) \left (x^{2}-x +\frac {1}{\ln \left ({\mathrm e}^{4}-\frac {4 \,{\mathrm e}^{2}}{x}+\frac {4}{x^{2}}+2 \,{\mathrm e}^{2}-\frac {4}{x}+1\right )}\right )\) | \(42\) |
default | \(-\ln \relax (5) \left (x^{2}-x +\frac {1}{\ln \left ({\mathrm e}^{4}-\frac {4 \,{\mathrm e}^{2}}{x}+\frac {4}{x^{2}}+2 \,{\mathrm e}^{2}-\frac {4}{x}+1\right )}\right )\) | \(42\) |
risch | \(-\ln \relax (5) x \left (x -1\right )-\frac {\ln \relax (5)}{\ln \left (\frac {x^{2} {\mathrm e}^{4}+\left (2 x^{2}-4 x \right ) {\mathrm e}^{2}+x^{2}-4 x +4}{x^{2}}\right )}\) | \(47\) |
norman | \(\frac {x \ln \relax (5) \ln \left (\frac {x^{2} {\mathrm e}^{4}+\left (2 x^{2}-4 x \right ) {\mathrm e}^{2}+x^{2}-4 x +4}{x^{2}}\right )-x^{2} \ln \relax (5) \ln \left (\frac {x^{2} {\mathrm e}^{4}+\left (2 x^{2}-4 x \right ) {\mathrm e}^{2}+x^{2}-4 x +4}{x^{2}}\right )-\ln \relax (5)}{\ln \left (\frac {x^{2} {\mathrm e}^{4}+\left (2 x^{2}-4 x \right ) {\mathrm e}^{2}+x^{2}-4 x +4}{x^{2}}\right )}\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 217, normalized size = 7.00 \begin {gather*} -{\left (\frac {x^{2} {\left (e^{2} + 1\right )} + 4 \, x}{e^{4} + 2 \, e^{2} + 1} + \frac {8 \, \log \left (x {\left (e^{2} + 1\right )} - 2\right )}{e^{6} + 3 \, e^{4} + 3 \, e^{2} + 1}\right )} e^{2} \log \relax (5) + {\left (\frac {x}{e^{2} + 1} + \frac {2 \, \log \left (x {\left (e^{2} + 1\right )} - 2\right )}{e^{4} + 2 \, e^{2} + 1}\right )} e^{2} \log \relax (5) - {\left (\frac {x^{2} {\left (e^{2} + 1\right )} + 4 \, x}{e^{4} + 2 \, e^{2} + 1} + \frac {8 \, \log \left (x {\left (e^{2} + 1\right )} - 2\right )}{e^{6} + 3 \, e^{4} + 3 \, e^{2} + 1}\right )} \log \relax (5) + 5 \, {\left (\frac {x}{e^{2} + 1} + \frac {2 \, \log \left (x {\left (e^{2} + 1\right )} - 2\right )}{e^{4} + 2 \, e^{2} + 1}\right )} \log \relax (5) - \frac {2 \, \log \relax (5) \log \left (x {\left (e^{2} + 1\right )} - 2\right )}{e^{2} + 1} - \frac {\log \relax (5)}{2 \, {\left (\log \left (x {\left (e^{2} + 1\right )} - 2\right ) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.82, size = 50, normalized size = 1.61 \begin {gather*} x\,\ln \relax (5)-x^2\,\ln \relax (5)-\frac {\ln \relax (5)}{\ln \left (\frac {x^2\,{\mathrm {e}}^4-{\mathrm {e}}^2\,\left (4\,x-2\,x^2\right )-4\,x+x^2+4}{x^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 46, normalized size = 1.48 \begin {gather*} - x^{2} \log {\relax (5 )} + x \log {\relax (5 )} - \frac {\log {\relax (5 )}}{\log {\left (\frac {x^{2} + x^{2} e^{4} - 4 x + \left (2 x^{2} - 4 x\right ) e^{2} + 4}{x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________