Optimal. Leaf size=24 \[ \frac {3 x^2}{64 \left (\frac {4}{x^2}+x^2\right ) \log ^2\left (x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12 x^3-3 x^7+12 x^3 \log \left (x^2\right )}{\left (256+128 x^4+16 x^8\right ) \log ^3\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=16 \int \frac {-12 x^3-3 x^7+12 x^3 \log \left (x^2\right )}{\left (64+16 x^4\right )^2 \log ^3\left (x^2\right )} \, dx\\ &=16 \int \frac {3 x^3 \left (-4-x^4+4 \log \left (x^2\right )\right )}{\left (64+16 x^4\right )^2 \log ^3\left (x^2\right )} \, dx\\ &=48 \int \frac {x^3 \left (-4-x^4+4 \log \left (x^2\right )\right )}{\left (64+16 x^4\right )^2 \log ^3\left (x^2\right )} \, dx\\ &=24 \operatorname {Subst}\left (\int -\frac {x \left (4+x^2-4 \log (x)\right )}{256 \left (4+x^2\right )^2 \log ^3(x)} \, dx,x,x^2\right )\\ &=-\left (\frac {3}{32} \operatorname {Subst}\left (\int \frac {x \left (4+x^2-4 \log (x)\right )}{\left (4+x^2\right )^2 \log ^3(x)} \, dx,x,x^2\right )\right )\\ &=-\left (\frac {3}{32} \operatorname {Subst}\left (\int \left (\frac {x}{\left (4+x^2\right ) \log ^3(x)}-\frac {4 x}{\left (4+x^2\right )^2 \log ^2(x)}\right ) \, dx,x,x^2\right )\right )\\ &=-\left (\frac {3}{32} \operatorname {Subst}\left (\int \frac {x}{\left (4+x^2\right ) \log ^3(x)} \, dx,x,x^2\right )\right )+\frac {3}{8} \operatorname {Subst}\left (\int \frac {x}{\left (4+x^2\right )^2 \log ^2(x)} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 20, normalized size = 0.83 \begin {gather*} \frac {3 x^4}{64 \left (4+x^4\right ) \log ^2\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.06, size = 18, normalized size = 0.75 \begin {gather*} \frac {3 \, x^{4}}{64 \, {\left (x^{4} + 4\right )} \log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 26, normalized size = 1.08 \begin {gather*} \frac {3 \, x^{4}}{64 \, {\left (x^{4} \log \left (x^{2}\right )^{2} + 4 \, \log \left (x^{2}\right )^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.79
method | result | size |
risch | \(\frac {3 x^{4}}{64 \left (x^{4}+4\right ) \ln \left (x^{2}\right )^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 16, normalized size = 0.67 \begin {gather*} \frac {3 \, x^{4}}{256 \, {\left (x^{4} + 4\right )} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.19, size = 18, normalized size = 0.75 \begin {gather*} \frac {3\,x^4}{64\,{\ln \left (x^2\right )}^2\,\left (x^4+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.71 \begin {gather*} \frac {3 x^{4}}{\left (64 x^{4} + 256\right ) \log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________