Optimal. Leaf size=24 \[ x-\log ^2\left (x \left (1-e^2-x+16 x^5\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x+e^2 x+x^2-16 x^6+\left (2-2 e^2-4 x+192 x^5\right ) \log \left (x-e^2 x-x^2+16 x^6\right )}{-x+e^2 x+x^2-16 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+e^2 x+x^2-16 x^6+\left (2-2 e^2-4 x+192 x^5\right ) \log \left (x-e^2 x-x^2+16 x^6\right )}{\left (-1+e^2\right ) x+x^2-16 x^6} \, dx\\ &=\int \frac {\left (-1+e^2\right ) x+x^2-16 x^6+\left (2-2 e^2-4 x+192 x^5\right ) \log \left (x-e^2 x-x^2+16 x^6\right )}{\left (-1+e^2\right ) x+x^2-16 x^6} \, dx\\ &=\int \frac {\left (-1+e^2\right ) x+x^2-16 x^6+\left (2-2 e^2-4 x+192 x^5\right ) \log \left (x-e^2 x-x^2+16 x^6\right )}{x \left (-1+e^2+x-16 x^5\right )} \, dx\\ &=\int \left (1-\frac {2 \left (1-e^2-2 x+96 x^5\right ) \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{x \left (1-e^2-x+16 x^5\right )}\right ) \, dx\\ &=x-2 \int \frac {\left (1-e^2-2 x+96 x^5\right ) \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{x \left (1-e^2-x+16 x^5\right )} \, dx\\ &=x-2 \int \left (\frac {\log \left (x \left (1-e^2-x+16 x^5\right )\right )}{x}+\frac {\left (1-80 x^4\right ) \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5}\right ) \, dx\\ &=x-2 \int \frac {\log \left (x \left (1-e^2-x+16 x^5\right )\right )}{x} \, dx-2 \int \frac {\left (1-80 x^4\right ) \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx\\ &=x-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \frac {\left (1-e^2-x+16 x^5+x \left (-1+80 x^4\right )\right ) \log (x)}{x \left (1-e^2-x+16 x^5\right )} \, dx-2 \int \left (\frac {\log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5}-\frac {80 x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5}\right ) \, dx\\ &=x-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \left (\frac {\log (x)}{x}+\frac {\left (1-80 x^4\right ) \log (x)}{-1+e^2+x-16 x^5}\right ) \, dx-2 \int \frac {\log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx+160 \int \frac {x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx\\ &=x-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \frac {\log (x)}{x} \, dx+2 \int \frac {\left (1-80 x^4\right ) \log (x)}{-1+e^2+x-16 x^5} \, dx+2 \int \frac {\left (1-e^2-2 x+96 x^5\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx}{x \left (1-e^2-x+16 x^5\right )} \, dx+160 \int \frac {x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx-\left (2 \log \left (x \left (1-e^2-x+16 x^5\right )\right )\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx\\ &=x+\log ^2(x)-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \left (\frac {\log (x)}{-1+e^2+x-16 x^5}-\frac {80 x^4 \log (x)}{-1+e^2+x-16 x^5}\right ) \, dx+2 \int \left (\frac {\int \frac {1}{-1+e^2+x-16 x^5} \, dx}{x}+\frac {\left (-1+80 x^4\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx}{1-e^2-x+16 x^5}\right ) \, dx+160 \int \frac {x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx-\left (2 \log \left (x \left (1-e^2-x+16 x^5\right )\right )\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx\\ &=x+\log ^2(x)-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \frac {\log (x)}{-1+e^2+x-16 x^5} \, dx+2 \int \frac {\int \frac {1}{-1+e^2+x-16 x^5} \, dx}{x} \, dx+2 \int \frac {\left (-1+80 x^4\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx}{1-e^2-x+16 x^5} \, dx-160 \int \frac {x^4 \log (x)}{-1+e^2+x-16 x^5} \, dx+160 \int \frac {x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx-\left (2 \log \left (x \left (1-e^2-x+16 x^5\right )\right )\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx\\ &=x+\log ^2(x)-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \frac {\log (x)}{-1+e^2+x-16 x^5} \, dx+2 \int \frac {\int \frac {1}{-1+e^2+x-16 x^5} \, dx}{x} \, dx+2 \int \left (\frac {\int \frac {1}{-1+e^2+x-16 x^5} \, dx}{-1+e^2+x-16 x^5}-\frac {80 x^4 \int \frac {1}{-1+e^2+x-16 x^5} \, dx}{-1+e^2+x-16 x^5}\right ) \, dx-160 \int \frac {x^4 \log (x)}{-1+e^2+x-16 x^5} \, dx+160 \int \frac {x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx-\left (2 \log \left (x \left (1-e^2-x+16 x^5\right )\right )\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx\\ &=x+\log ^2(x)-2 \log (x) \log \left (x \left (1-e^2-x+16 x^5\right )\right )+2 \int \frac {\log (x)}{-1+e^2+x-16 x^5} \, dx+2 \int \frac {\int \frac {1}{-1+e^2+x-16 x^5} \, dx}{x} \, dx+2 \int \frac {\int \frac {1}{-1+e^2+x-16 x^5} \, dx}{-1+e^2+x-16 x^5} \, dx-160 \int \frac {x^4 \log (x)}{-1+e^2+x-16 x^5} \, dx+160 \int \frac {x^4 \log \left (x \left (1-e^2-x+16 x^5\right )\right )}{-1+e^2+x-16 x^5} \, dx-160 \int \frac {x^4 \int \frac {1}{-1+e^2+x-16 x^5} \, dx}{-1+e^2+x-16 x^5} \, dx-\left (2 \log \left (x \left (1-e^2-x+16 x^5\right )\right )\right ) \int \frac {1}{-1+e^2+x-16 x^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 24, normalized size = 1.00 \begin {gather*} x-\log ^2\left (x \left (1-e^2-x+16 x^5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 24, normalized size = 1.00 \begin {gather*} -\log \left (16 \, x^{6} - x^{2} - x e^{2} + x\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {16 \, x^{6} - x^{2} - x e^{2} - 2 \, {\left (96 \, x^{5} - 2 \, x - e^{2} + 1\right )} \log \left (16 \, x^{6} - x^{2} - x e^{2} + x\right ) + x}{16 \, x^{6} - x^{2} - x e^{2} + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 25, normalized size = 1.04
method | result | size |
risch | \(x -\ln \left (-{\mathrm e}^{2} x +16 x^{6}-x^{2}+x \right )^{2}\) | \(25\) |
norman | \(x -\ln \left (-{\mathrm e}^{2} x +16 x^{6}-x^{2}+x \right )^{2}\) | \(27\) |
default | error in gcdex: invalid arguments\ | N/A |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 46, normalized size = 1.92 \begin {gather*} -\log \left (16 \, x^{5} - x - e^{2} + 1\right )^{2} - 2 \, \log \left (16 \, x^{5} - x - e^{2} + 1\right ) \log \relax (x) - \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.06, size = 24, normalized size = 1.00 \begin {gather*} x-{\ln \left (x-x\,{\mathrm {e}}^2-x^2+16\,x^6\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 19, normalized size = 0.79 \begin {gather*} x - \log {\left (16 x^{6} - x^{2} - x e^{2} + x \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________