Optimal. Leaf size=23 \[ 1+\frac {90 x}{3+2 x+\left (-e^{13/4}+x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 27, normalized size of antiderivative = 1.17, number of steps used = 5, number of rules used = 5, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {6, 1680, 12, 1814, 8} \begin {gather*} \frac {90 x}{x^2+2 \left (1-e^{13/4}\right ) x+e^{13/2}+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {270+90 e^{13/2}-90 x^2}{9+e^{13}+\left (12-4 e^{39/4}\right ) x+10 x^2+4 x^3+x^4+e^{13/2} \left (6+4 x+6 x^2\right )+e^{13/4} \left (-12 x-8 x^2-4 x^3\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {90 \left (2 \left (1+e^{13/4}\right )+2 \left (1-e^{13/4}\right ) x-x^2\right )}{\left (2+2 e^{13/4}+x^2\right )^2} \, dx,x,\frac {1}{4} \left (4-4 e^{13/4}\right )+x\right )\\ &=90 \operatorname {Subst}\left (\int \frac {2 \left (1+e^{13/4}\right )+2 \left (1-e^{13/4}\right ) x-x^2}{\left (2+2 e^{13/4}+x^2\right )^2} \, dx,x,\frac {1}{4} \left (4-4 e^{13/4}\right )+x\right )\\ &=\frac {90 x}{3+e^{13/2}+2 \left (1-e^{13/4}\right ) x+x^2}-\frac {45 \operatorname {Subst}\left (\int 0 \, dx,x,\frac {1}{4} \left (4-4 e^{13/4}\right )+x\right )}{2 \left (1+e^{13/4}\right )}\\ &=\frac {90 x}{3+e^{13/2}+2 \left (1-e^{13/4}\right ) x+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 26, normalized size = 1.13 \begin {gather*} \frac {90 x}{3+e^{13/2}+2 x-2 e^{13/4} x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 20, normalized size = 0.87 \begin {gather*} \frac {90 \, x}{x^{2} - 2 \, x e^{\frac {13}{4}} + 2 \, x + e^{\frac {13}{2}} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {90 \, {\left (x^{2} - e^{\frac {13}{2}} - 3\right )}}{x^{4} + 4 \, x^{3} + 10 \, x^{2} - 4 \, x e^{\frac {39}{4}} + 2 \, {\left (3 \, x^{2} + 2 \, x + 3\right )} e^{\frac {13}{2}} - 4 \, {\left (x^{3} + 2 \, x^{2} + 3 \, x\right )} e^{\frac {13}{4}} + 12 \, x + e^{13} + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 21, normalized size = 0.91
method | result | size |
risch | \(\frac {90 x}{{\mathrm e}^{\frac {13}{2}}-2 \,{\mathrm e}^{\frac {13}{4}} x +x^{2}+2 x +3}\) | \(21\) |
gosper | \(\frac {90 x}{{\mathrm e}^{\frac {13}{2}}-2 \,{\mathrm e}^{\frac {13}{4}} x +x^{2}+2 x +3}\) | \(23\) |
norman | \(\frac {90 x}{{\mathrm e}^{\frac {13}{2}}-2 \,{\mathrm e}^{\frac {13}{4}} x +x^{2}+2 x +3}\) | \(23\) |
default | \(-\frac {45 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+\left (-4 \,{\mathrm e}^{\frac {13}{4}}+4\right ) \textit {\_Z}^{3}+\left (-8 \,{\mathrm e}^{\frac {13}{4}}+6 \,{\mathrm e}^{\frac {13}{2}}+10\right ) \textit {\_Z}^{2}+\left (-12 \,{\mathrm e}^{\frac {13}{4}}+4 \,{\mathrm e}^{\frac {13}{2}}-4 \,{\mathrm e}^{\frac {39}{4}}+12\right ) \textit {\_Z} +6 \,{\mathrm e}^{\frac {13}{2}}+{\mathrm e}^{13}+9\right )}{\sum }\frac {\left ({\mathrm e}^{\frac {13}{2}}-\textit {\_R}^{2}+3\right ) \ln \left (x -\textit {\_R} \right )}{-3+3 \,{\mathrm e}^{\frac {13}{4}} \textit {\_R}^{2}-\textit {\_R}^{3}+4 \,{\mathrm e}^{\frac {13}{4}} \textit {\_R} -3 \,{\mathrm e}^{\frac {13}{2}} \textit {\_R} -3 \textit {\_R}^{2}+3 \,{\mathrm e}^{\frac {13}{4}}-{\mathrm e}^{\frac {13}{2}}+{\mathrm e}^{\frac {39}{4}}-5 \textit {\_R}}\right )}{2}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -90 \, \int \frac {x^{2} - e^{\frac {13}{2}} - 3}{x^{4} + 4 \, x^{3} + 10 \, x^{2} - 4 \, x e^{\frac {39}{4}} + 2 \, {\left (3 \, x^{2} + 2 \, x + 3\right )} e^{\frac {13}{2}} - 4 \, {\left (x^{3} + 2 \, x^{2} + 3 \, x\right )} e^{\frac {13}{4}} + 12 \, x + e^{13} + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.89, size = 21, normalized size = 0.91 \begin {gather*} \frac {90\,x}{x^2+\left (2-2\,{\mathrm {e}}^{13/4}\right )\,x+{\mathrm {e}}^{13/2}+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.17, size = 51, normalized size = 2.22 \begin {gather*} - \frac {x \left (- 90 e^{\frac {13}{4}} - 90\right )}{x^{2} \left (1 + e^{\frac {13}{4}}\right ) + x \left (2 - 2 e^{\frac {13}{2}}\right ) + 3 + 3 e^{\frac {13}{4}} + e^{\frac {13}{2}} + e^{\frac {39}{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________