Optimal. Leaf size=25 \[ \log \left (\frac {-2+x}{e^2}\right ) \left (5+e^4+x-\log (x)+\log (4+2 x)\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.52, antiderivative size = 123, normalized size of antiderivative = 4.92, number of steps used = 21, number of rules used = 13, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {1593, 6725, 207, 260, 321, 2418, 2394, 2315, 2393, 2391, 2389, 2295, 2316} \begin {gather*} \text {Li}_2\left (\frac {2-x}{4}\right )+\text {Li}_2\left (\frac {x+2}{4}\right )+\frac {7}{2} \log \left (4-x^2\right )-2 x+e^4 \log (2-x)-(2-x) \log (x-2)-\log (2) \log (x-2)+(2-\log (x-2)) \log \left (\frac {x}{2}\right )-(2-\log (x-2)) \log \left (\frac {x+2}{4}\right )+\log \left (\frac {2-x}{4}\right ) \log (2 x+4)-7 \tanh ^{-1}\left (\frac {x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 207
Rule 260
Rule 321
Rule 1593
Rule 2295
Rule 2315
Rule 2316
Rule 2389
Rule 2391
Rule 2393
Rule 2394
Rule 2418
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+7 x^2+x^3+e^4 \left (2 x+x^2\right )+\left (4-6 x+x^3\right ) \log \left (\frac {-2+x}{e^2}\right )+\left (-2 x-x^2\right ) \log (x)+\left (2 x+x^2\right ) \log (4+2 x)}{x \left (-4+x^2\right )} \, dx\\ &=\int \left (\frac {e^4}{-2+x}+\frac {10}{-4+x^2}+\frac {7 x}{-4+x^2}+\frac {x^2}{-4+x^2}+\frac {\left (-2+2 x+x^2\right ) (-2+\log (-2+x))}{x (2+x)}-\frac {\log (x)}{-2+x}+\frac {\log (4+2 x)}{-2+x}\right ) \, dx\\ &=e^4 \log (2-x)+7 \int \frac {x}{-4+x^2} \, dx+10 \int \frac {1}{-4+x^2} \, dx+\int \frac {x^2}{-4+x^2} \, dx+\int \frac {\left (-2+2 x+x^2\right ) (-2+\log (-2+x))}{x (2+x)} \, dx-\int \frac {\log (x)}{-2+x} \, dx+\int \frac {\log (4+2 x)}{-2+x} \, dx\\ &=x-5 \tanh ^{-1}\left (\frac {x}{2}\right )+e^4 \log (2-x)-\log (2) \log (-2+x)+\log \left (\frac {2-x}{4}\right ) \log (4+2 x)+\frac {7}{2} \log \left (4-x^2\right )-2 \int \frac {\log \left (\frac {2-x}{4}\right )}{4+2 x} \, dx+4 \int \frac {1}{-4+x^2} \, dx+\int \left (-2-\frac {-2+\log (-2+x)}{x}+\frac {-2+\log (-2+x)}{2+x}+\log (-2+x)\right ) \, dx-\int \frac {\log \left (\frac {x}{2}\right )}{-2+x} \, dx\\ &=-x-7 \tanh ^{-1}\left (\frac {x}{2}\right )+e^4 \log (2-x)-\log (2) \log (-2+x)+\log \left (\frac {2-x}{4}\right ) \log (4+2 x)+\frac {7}{2} \log \left (4-x^2\right )+\text {Li}_2\left (1-\frac {x}{2}\right )-\int \frac {-2+\log (-2+x)}{x} \, dx+\int \frac {-2+\log (-2+x)}{2+x} \, dx+\int \log (-2+x) \, dx-\operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{8}\right )}{x} \, dx,x,4+2 x\right )\\ &=-x-7 \tanh ^{-1}\left (\frac {x}{2}\right )+e^4 \log (2-x)-\log (2) \log (-2+x)+(2-\log (-2+x)) \log \left (\frac {x}{2}\right )-(2-\log (-2+x)) \log \left (\frac {2+x}{4}\right )+\log \left (\frac {2-x}{4}\right ) \log (4+2 x)+\frac {7}{2} \log \left (4-x^2\right )+\text {Li}_2\left (1-\frac {x}{2}\right )+\text {Li}_2\left (\frac {2+x}{4}\right )+\int \frac {\log \left (\frac {x}{2}\right )}{-2+x} \, dx-\int \frac {\log \left (\frac {2+x}{4}\right )}{-2+x} \, dx+\operatorname {Subst}(\int \log (x) \, dx,x,-2+x)\\ &=-2 x-7 \tanh ^{-1}\left (\frac {x}{2}\right )+e^4 \log (2-x)+(-2+x) \log (-2+x)-\log (2) \log (-2+x)+(2-\log (-2+x)) \log \left (\frac {x}{2}\right )-(2-\log (-2+x)) \log \left (\frac {2+x}{4}\right )+\log \left (\frac {2-x}{4}\right ) \log (4+2 x)+\frac {7}{2} \log \left (4-x^2\right )+\text {Li}_2\left (\frac {2+x}{4}\right )-\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{4}\right )}{x} \, dx,x,-2+x\right )\\ &=-2 x-7 \tanh ^{-1}\left (\frac {x}{2}\right )+e^4 \log (2-x)+(-2+x) \log (-2+x)-\log (2) \log (-2+x)+(2-\log (-2+x)) \log \left (\frac {x}{2}\right )-(2-\log (-2+x)) \log \left (\frac {2+x}{4}\right )+\log \left (\frac {2-x}{4}\right ) \log (4+2 x)+\frac {7}{2} \log \left (4-x^2\right )+\text {Li}_2\left (\frac {2-x}{4}\right )+\text {Li}_2\left (\frac {2+x}{4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 46, normalized size = 1.84 \begin {gather*} -2 x+\log (4)+\left (7+e^4\right ) \log (2-x)+2 \log (x)-2 \log (2+x)+\log (-2+x) (-2+x-\log (x)+\log (2 (2+x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 39, normalized size = 1.56 \begin {gather*} {\left (x + e^{4} + 5\right )} \log \left ({\left (x - 2\right )} e^{\left (-2\right )}\right ) + \log \left ({\left (x - 2\right )} e^{\left (-2\right )}\right ) \log \left (2 \, x + 4\right ) - \log \left ({\left (x - 2\right )} e^{\left (-2\right )}\right ) \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 52, normalized size = 2.08 \begin {gather*} x \log \left (x - 2\right ) + e^{4} \log \left (x - 2\right ) + \log \left (2 \, x + 4\right ) \log \left (x - 2\right ) - \log \left (x - 2\right ) \log \relax (x) - 2 \, x - 2 \, \log \left (x + 2\right ) + 5 \, \log \left (x - 2\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 35, normalized size = 1.40
method | result | size |
risch | \(\left (x -\ln \relax (x )+\ln \left (2 x +4\right )\right ) \ln \left (\left (x -2\right ) {\mathrm e}^{-2}\right )+\ln \left (x -2\right ) {\mathrm e}^{4}+5 \ln \left (x -2\right )\) | \(35\) |
default | \(\ln \relax (2) \ln \left (x -2\right )+\left (\ln \left (2+x \right )-\ln \left (\frac {1}{2}+\frac {x}{4}\right )\right ) \ln \left (\frac {1}{2}-\frac {x}{4}\right )-2 x +2 \ln \relax (x )-2 \ln \left (2+x \right )+\ln \left (x -2\right ) {\mathrm e}^{4}+7 \ln \left (x -2\right )+\left (x -2\right ) \ln \left (x -2\right )+2-\ln \left (x -2\right ) \ln \left (\frac {x}{2}\right )+\ln \left (x -2\right ) \ln \left (\frac {1}{2}+\frac {x}{4}\right )-\left (\ln \relax (x )-\ln \left (\frac {x}{2}\right )\right ) \ln \left (1-\frac {x}{2}\right )\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 67, normalized size = 2.68 \begin {gather*} \frac {1}{2} \, {\left (\log \left (x + 2\right ) + \log \left (x - 2\right )\right )} e^{4} - \frac {1}{2} \, {\left (\log \left (x + 2\right ) - \log \left (x - 2\right )\right )} e^{4} + {\left (\log \left (x - 2\right ) - 2\right )} \log \left (x + 2\right ) + {\left (x + \log \relax (2) - \log \relax (x) - 2\right )} \log \left (x - 2\right ) - 2 \, x + 7 \, \log \left (x - 2\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.17, size = 48, normalized size = 1.92 \begin {gather*} 5\,\ln \left (x-2\right )+\ln \left (x-2\right )\,{\mathrm {e}}^4+\ln \left ({\mathrm {e}}^{-2}\,\left (x-2\right )\right )\,\ln \left (2\,x+4\right )-\ln \left ({\mathrm {e}}^{-2}\,\left (x-2\right )\right )\,\ln \relax (x)+x\,\ln \left ({\mathrm {e}}^{-2}\,\left (x-2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 29, normalized size = 1.16 \begin {gather*} \left (x - \log {\relax (x )} + \log {\left (2 x + 4 \right )}\right ) \log {\left (\frac {x - 2}{e^{2}} \right )} + \left (5 + e^{4}\right ) \log {\left (x - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________