3.80.23 3x2+e2(x2+3x4)+ex(30+30x+e2(2x3x4))x2dx

Optimal. Leaf size=36 e2(x+(exx)x2)+3(x+10ex+xx)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 34, normalized size of antiderivative = 0.94, number of steps used = 12, number of rules used = 6, integrand size = 49, number of rulesintegrand size = 0.122, Rules used = {14, 2199, 2177, 2178, 2176, 2194} e2x3ex+2x2(3+e2)x+30exx

Antiderivative was successfully verified.

[In]

Int[(-3*x^2 + E^2*(-x^2 + 3*x^4) + E^x*(-30 + 30*x + E^2*(-2*x^3 - x^4)))/x^2,x]

[Out]

(30*E^x)/x - (3 + E^2)*x - E^(2 + x)*x^2 + E^2*x^3

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rubi steps

integral=(3(1+e23)+3e2x2ex(3030x+2e2x3+e2x4)x2)dx=((3+e2)x)+e2x3ex(3030x+2e2x3+e2x4)x2dx=((3+e2)x)+e2x3(30exx230exx+2e2+xx+e2+xx2)dx=((3+e2)x)+e2x32e2+xxdx30exx2dx+30exxdxe2+xx2dx=30exx2e2+xx(3+e2)xe2+xx2+e2x3+30Ei(x)+2e2+xdx+2e2+xxdx30exxdx=2e2+x+30exx(3+e2)xe2+xx2+e2x32e2+xdx=30exx(3+e2)xe2+xx2+e2x3

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 35, normalized size = 0.97 30exx3xe2xe2+xx2+e2x3

Antiderivative was successfully verified.

[In]

Integrate[(-3*x^2 + E^2*(-x^2 + 3*x^4) + E^x*(-30 + 30*x + E^2*(-2*x^3 - x^4)))/x^2,x]

[Out]

(30*E^x)/x - 3*x - E^2*x - E^(2 + x)*x^2 + E^2*x^3

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 35, normalized size = 0.97 3x2(x4x2)e2+(x3e230)exx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x, algorithm="fricas")

[Out]

-(3*x^2 - (x^4 - x^2)*e^2 + (x^3*e^2 - 30)*e^x)/x

________________________________________________________________________________________

giac [A]  time = 0.24, size = 36, normalized size = 1.00 x4e2x3e(x+2)x2e23x2+30exx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x, algorithm="giac")

[Out]

(x^4*e^2 - x^3*e^(x + 2) - x^2*e^2 - 3*x^2 + 30*e^x)/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 31, normalized size = 0.86




method result size



risch x3e2e2x3x(x3e230)exx 31
norman x4e2+(e23)x2x3e2ex+30exx 35
default 3x+x3e2+30exx2e2(exxex)e2(exx22exx+2ex)e2x 56



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

x^3*exp(2)-exp(2)*x-3*x-(x^3*exp(2)-30)/x*exp(x)

________________________________________________________________________________________

maxima [C]  time = 0.39, size = 59, normalized size = 1.64 x3e2xe2(x2e22xe2+2e2)ex2(xe2e2)ex3x+30Ei(x)30Γ(1,x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x, algorithm="maxima")

[Out]

x^3*e^2 - x*e^2 - (x^2*e^2 - 2*x*e^2 + 2*e^2)*e^x - 2*(x*e^2 - e^2)*e^x - 3*x + 30*Ei(x) - 30*gamma(-1, -x)

________________________________________________________________________________________

mupad [B]  time = 5.02, size = 30, normalized size = 0.83 30exxx2ex+2x(e2+3)+x3e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2)*(x^2 - 3*x^4) + exp(x)*(exp(2)*(2*x^3 + x^4) - 30*x + 30) + 3*x^2)/x^2,x)

[Out]

(30*exp(x))/x - x^2*exp(x + 2) - x*(exp(2) + 3) + x^3*exp(2)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 27, normalized size = 0.75 x3e2+x(e23)+(x3e2+30)exx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x**4-2*x**3)*exp(2)+30*x-30)*exp(x)+(3*x**4-x**2)*exp(2)-3*x**2)/x**2,x)

[Out]

x**3*exp(2) + x*(-exp(2) - 3) + (-x**3*exp(2) + 30)*exp(x)/x

________________________________________________________________________________________