3.80.23
Optimal. Leaf size=36
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 34, normalized size of antiderivative = 0.94,
number of steps used = 12, number of rules used = 6, integrand size = 49, = 0.122, Rules used
= {14, 2199, 2177, 2178, 2176, 2194}
Antiderivative was successfully verified.
[In]
Int[(-3*x^2 + E^2*(-x^2 + 3*x^4) + E^x*(-30 + 30*x + E^2*(-2*x^3 - x^4)))/x^2,x]
[Out]
(30*E^x)/x - (3 + E^2)*x - E^(2 + x)*x^2 + E^2*x^3
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 35, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[(-3*x^2 + E^2*(-x^2 + 3*x^4) + E^x*(-30 + 30*x + E^2*(-2*x^3 - x^4)))/x^2,x]
[Out]
(30*E^x)/x - 3*x - E^2*x - E^(2 + x)*x^2 + E^2*x^3
________________________________________________________________________________________
fricas [A] time = 0.57, size = 35, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x, algorithm="fricas")
[Out]
-(3*x^2 - (x^4 - x^2)*e^2 + (x^3*e^2 - 30)*e^x)/x
________________________________________________________________________________________
giac [A] time = 0.24, size = 36, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x, algorithm="giac")
[Out]
(x^4*e^2 - x^3*e^(x + 2) - x^2*e^2 - 3*x^2 + 30*e^x)/x
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 0.86
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x,method=_RETURNVERBOSE)
[Out]
x^3*exp(2)-exp(2)*x-3*x-(x^3*exp(2)-30)/x*exp(x)
________________________________________________________________________________________
maxima [C] time = 0.39, size = 59, normalized size = 1.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4-2*x^3)*exp(2)+30*x-30)*exp(x)+(3*x^4-x^2)*exp(2)-3*x^2)/x^2,x, algorithm="maxima")
[Out]
x^3*e^2 - x*e^2 - (x^2*e^2 - 2*x*e^2 + 2*e^2)*e^x - 2*(x*e^2 - e^2)*e^x - 3*x + 30*Ei(x) - 30*gamma(-1, -x)
________________________________________________________________________________________
mupad [B] time = 5.02, size = 30, normalized size = 0.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2)*(x^2 - 3*x^4) + exp(x)*(exp(2)*(2*x^3 + x^4) - 30*x + 30) + 3*x^2)/x^2,x)
[Out]
(30*exp(x))/x - x^2*exp(x + 2) - x*(exp(2) + 3) + x^3*exp(2)
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x**4-2*x**3)*exp(2)+30*x-30)*exp(x)+(3*x**4-x**2)*exp(2)-3*x**2)/x**2,x)
[Out]
x**3*exp(2) + x*(-exp(2) - 3) + (-x**3*exp(2) + 30)*exp(x)/x
________________________________________________________________________________________