Optimal. Leaf size=16 \[ \frac {5}{2} e^{2 x} x \left (-5+e^x+x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 46, normalized size of antiderivative = 2.88, number of steps used = 12, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 2176, 2194, 2196} \begin {gather*} \frac {5}{2} e^{2 x} x^2-\frac {25}{2} e^{2 x} x-\frac {5 e^{3 x}}{6}+\frac {5}{6} e^{3 x} (3 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (e^{3 x} (5+15 x)+e^{2 x} \left (-25-40 x+10 x^2\right )\right ) \, dx\\ &=\frac {1}{2} \int e^{3 x} (5+15 x) \, dx+\frac {1}{2} \int e^{2 x} \left (-25-40 x+10 x^2\right ) \, dx\\ &=\frac {5}{6} e^{3 x} (1+3 x)+\frac {1}{2} \int \left (-25 e^{2 x}-40 e^{2 x} x+10 e^{2 x} x^2\right ) \, dx-\frac {5}{2} \int e^{3 x} \, dx\\ &=-\frac {5 e^{3 x}}{6}+\frac {5}{6} e^{3 x} (1+3 x)+5 \int e^{2 x} x^2 \, dx-\frac {25}{2} \int e^{2 x} \, dx-20 \int e^{2 x} x \, dx\\ &=-\frac {25 e^{2 x}}{4}-\frac {5 e^{3 x}}{6}-10 e^{2 x} x+\frac {5}{2} e^{2 x} x^2+\frac {5}{6} e^{3 x} (1+3 x)-5 \int e^{2 x} x \, dx+10 \int e^{2 x} \, dx\\ &=-\frac {5 e^{2 x}}{4}-\frac {5 e^{3 x}}{6}-\frac {25}{2} e^{2 x} x+\frac {5}{2} e^{2 x} x^2+\frac {5}{6} e^{3 x} (1+3 x)+\frac {5}{2} \int e^{2 x} \, dx\\ &=-\frac {5 e^{3 x}}{6}-\frac {25}{2} e^{2 x} x+\frac {5}{2} e^{2 x} x^2+\frac {5}{6} e^{3 x} (1+3 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 16, normalized size = 1.00 \begin {gather*} \frac {5}{2} e^{2 x} x \left (-5+e^x+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 21, normalized size = 1.31 \begin {gather*} \frac {5}{2} \, x e^{\left (3 \, x\right )} + \frac {5}{2} \, {\left (x^{2} - 5 \, x\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 1.31 \begin {gather*} \frac {5}{2} \, x e^{\left (3 \, x\right )} + \frac {5}{2} \, {\left (x^{2} - 5 \, x\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.50
method | result | size |
risch | \(\frac {5 x \,{\mathrm e}^{3 x}}{2}+\frac {\left (5 x^{2}-25 x \right ) {\mathrm e}^{2 x}}{2}\) | \(24\) |
default | \(\frac {5 x \,{\mathrm e}^{3 x}}{2}-\frac {25 x \,{\mathrm e}^{2 x}}{2}+\frac {5 \,{\mathrm e}^{2 x} x^{2}}{2}\) | \(25\) |
norman | \(\frac {5 x \,{\mathrm e}^{3 x}}{2}-\frac {25 x \,{\mathrm e}^{2 x}}{2}+\frac {5 \,{\mathrm e}^{2 x} x^{2}}{2}\) | \(25\) |
meijerg | \(\frac {5 \,{\mathrm e}^{3 x}}{6}-\frac {5 \left (-6 x +2\right ) {\mathrm e}^{3 x}}{12}-\frac {25 \,{\mathrm e}^{2 x}}{4}+\frac {5 \left (12 x^{2}-12 x +6\right ) {\mathrm e}^{2 x}}{24}+\frac {5 \left (-4 x +2\right ) {\mathrm e}^{2 x}}{2}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 41, normalized size = 2.56 \begin {gather*} \frac {5}{2} \, x e^{\left (3 \, x\right )} + \frac {5}{4} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} - 5 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - \frac {25}{4} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 12, normalized size = 0.75 \begin {gather*} \frac {5\,x\,{\mathrm {e}}^{2\,x}\,\left (x+{\mathrm {e}}^x-5\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 24, normalized size = 1.50 \begin {gather*} \frac {5 x e^{3 x}}{2} + \frac {\left (10 x^{2} - 50 x\right ) e^{2 x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________