Optimal. Leaf size=22 \[ x-\left (-x-\frac {48 \log (x)}{e+\log (x)}\right ) \log (2+x) \]
________________________________________________________________________________________
Rubi [F] time = 1.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 \left (2 x+2 x^2\right )+e \left (52 x+4 x^2\right ) \log (x)+\left (50 x+2 x^2\right ) \log ^2(x)+\left (e (96+48 x)+e^2 \left (2 x+x^2\right )+e \left (4 x+2 x^2\right ) \log (x)+\left (2 x+x^2\right ) \log ^2(x)\right ) \log (2+x)}{e^2 \left (2 x+x^2\right )+e \left (4 x+2 x^2\right ) \log (x)+\left (2 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e x \log (x) (2 (13+x)+(2+x) \log (2+x))+x \log ^2(x) (2 (25+x)+(2+x) \log (2+x))+e (2 e x (1+x)+(2+x) (48+e x) \log (2+x))}{x (2+x) (e+\log (x))^2} \, dx\\ &=\int \left (\frac {2 e^2 (1+x)}{(2+x) (e+\log (x))^2}+\frac {4 e (13+x) \log (x)}{(2+x) (e+\log (x))^2}+\frac {2 (25+x) \log ^2(x)}{(2+x) (e+\log (x))^2}+\frac {\left (48 e+e^2 x+2 e x \log (x)+x \log ^2(x)\right ) \log (2+x)}{x (e+\log (x))^2}\right ) \, dx\\ &=2 \int \frac {(25+x) \log ^2(x)}{(2+x) (e+\log (x))^2} \, dx+(4 e) \int \frac {(13+x) \log (x)}{(2+x) (e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {1+x}{(2+x) (e+\log (x))^2} \, dx+\int \frac {\left (48 e+e^2 x+2 e x \log (x)+x \log ^2(x)\right ) \log (2+x)}{x (e+\log (x))^2} \, dx\\ &=2 \int \left (\frac {25+x}{2+x}+\frac {e^2 (25+x)}{(2+x) (e+\log (x))^2}-\frac {2 e (25+x)}{(2+x) (e+\log (x))}\right ) \, dx+(4 e) \int \left (-\frac {e (13+x)}{(2+x) (e+\log (x))^2}+\frac {13+x}{(2+x) (e+\log (x))}\right ) \, dx+\left (2 e^2\right ) \int \frac {1+x}{(2+x) (e+\log (x))^2} \, dx+\int \left (\frac {e^2 \log (2+x)}{(e+\log (x))^2}+\frac {48 e \log (2+x)}{x (e+\log (x))^2}+\frac {2 e \log (x) \log (2+x)}{(e+\log (x))^2}+\frac {\log ^2(x) \log (2+x)}{(e+\log (x))^2}\right ) \, dx\\ &=2 \int \frac {25+x}{2+x} \, dx+(2 e) \int \frac {\log (x) \log (2+x)}{(e+\log (x))^2} \, dx+(4 e) \int \frac {13+x}{(2+x) (e+\log (x))} \, dx-(4 e) \int \frac {25+x}{(2+x) (e+\log (x))} \, dx+(48 e) \int \frac {\log (2+x)}{x (e+\log (x))^2} \, dx+e^2 \int \frac {\log (2+x)}{(e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {1+x}{(2+x) (e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {25+x}{(2+x) (e+\log (x))^2} \, dx-\left (4 e^2\right ) \int \frac {13+x}{(2+x) (e+\log (x))^2} \, dx+\int \frac {\log ^2(x) \log (2+x)}{(e+\log (x))^2} \, dx\\ &=2 \int \left (1+\frac {23}{2+x}\right ) \, dx+(2 e) \int \frac {\log (x) \log (2+x)}{(e+\log (x))^2} \, dx+(4 e) \int \frac {13+x}{(2+x) (e+\log (x))} \, dx-(4 e) \int \frac {25+x}{(2+x) (e+\log (x))} \, dx+(48 e) \int \frac {\log (2+x)}{x (e+\log (x))^2} \, dx+e^2 \int \frac {\log (2+x)}{(e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {1+x}{(2+x) (e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {25+x}{(2+x) (e+\log (x))^2} \, dx-\left (4 e^2\right ) \int \frac {13+x}{(2+x) (e+\log (x))^2} \, dx+\int \frac {\log ^2(x) \log (2+x)}{(e+\log (x))^2} \, dx\\ &=2 x+46 \log (2+x)+(2 e) \int \frac {\log (x) \log (2+x)}{(e+\log (x))^2} \, dx+(4 e) \int \frac {13+x}{(2+x) (e+\log (x))} \, dx-(4 e) \int \frac {25+x}{(2+x) (e+\log (x))} \, dx+(48 e) \int \frac {\log (2+x)}{x (e+\log (x))^2} \, dx+e^2 \int \frac {\log (2+x)}{(e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {1+x}{(2+x) (e+\log (x))^2} \, dx+\left (2 e^2\right ) \int \frac {25+x}{(2+x) (e+\log (x))^2} \, dx-\left (4 e^2\right ) \int \frac {13+x}{(2+x) (e+\log (x))^2} \, dx+\int \frac {\log ^2(x) \log (2+x)}{(e+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 30, normalized size = 1.36 \begin {gather*} x+48 \log (2+x)+\frac {(-48 e+e x+x \log (x)) \log (2+x)}{e+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 33, normalized size = 1.50 \begin {gather*} \frac {x e + {\left (x e + {\left (x + 48\right )} \log \relax (x)\right )} \log \left (x + 2\right ) + x \log \relax (x)}{e + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 41, normalized size = 1.86 \begin {gather*} \frac {x e \log \left (x + 2\right ) + x \log \left (x + 2\right ) \log \relax (x) + x e + x \log \relax (x) + 48 \, \log \left (x + 2\right ) \log \relax (x)}{e + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 34, normalized size = 1.55
method | result | size |
risch | \(\frac {\left (x \,{\mathrm e}+x \ln \relax (x )-48 \,{\mathrm e}\right ) \ln \left (2+x \right )}{{\mathrm e}+\ln \relax (x )}+x +48 \ln \left (2+x \right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 33, normalized size = 1.50 \begin {gather*} \frac {x e + {\left (x e + {\left (x + 48\right )} \log \relax (x)\right )} \log \left (x + 2\right ) + x \log \relax (x)}{e + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.96, size = 41, normalized size = 1.86 \begin {gather*} \frac {x\,\mathrm {e}+48\,\ln \left (x+2\right )\,\ln \relax (x)+x\,\ln \relax (x)+x\,\ln \left (x+2\right )\,\mathrm {e}+x\,\ln \left (x+2\right )\,\ln \relax (x)}{\mathrm {e}+\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 34, normalized size = 1.55 \begin {gather*} x + 48 \log {\left (x + 2 \right )} + \frac {\left (x \log {\relax (x )} + e x - 48 e\right ) \log {\left (x + 2 \right )}}{\log {\relax (x )} + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________