Optimal. Leaf size=24 \[ \log \left (\frac {e^{2 x}}{(-4+x)^2}-4 \left (x-\frac {x}{\log (16)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-256+192 x-48 x^2+4 x^3+e^{2 x} (-10+2 x) \log (16)+\left (256-192 x+48 x^2-4 x^3\right ) \log (16)}{-256 x+192 x^2-48 x^3+4 x^4+e^{2 x} (-4+x) \log (16)+\left (256 x-192 x^2+48 x^3-4 x^4\right ) \log (16)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {256-192 x+48 x^2-4 x^3-e^{2 x} (-10+2 x) \log (16)-\left (256-192 x+48 x^2-4 x^3\right ) \log (16)}{(4-x) \left (64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)\right )} \, dx\\ &=\int \left (\frac {2 (-5+x)}{-4+x}+\frac {4 \left (16-48 x+19 x^2-2 x^3\right ) (1-\log (16))}{64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)}\right ) \, dx\\ &=2 \int \frac {-5+x}{-4+x} \, dx+(4 (1-\log (16))) \int \frac {16-48 x+19 x^2-2 x^3}{64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)} \, dx\\ &=2 \int \left (1+\frac {1}{4-x}\right ) \, dx+(4 (1-\log (16))) \int \left (\frac {48 x}{-64 x (1-\log (16))+32 x^2 (1-\log (16))-4 x^3 (1-\log (16))-e^{2 x} \log (16)}+\frac {2 x^3}{-64 x (1-\log (16))+32 x^2 (1-\log (16))-4 x^3 (1-\log (16))-e^{2 x} \log (16)}+\frac {16}{64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)}+\frac {19 x^2}{64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)}\right ) \, dx\\ &=2 x-2 \log (4-x)+(8 (1-\log (16))) \int \frac {x^3}{-64 x (1-\log (16))+32 x^2 (1-\log (16))-4 x^3 (1-\log (16))-e^{2 x} \log (16)} \, dx+(64 (1-\log (16))) \int \frac {1}{64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)} \, dx+(76 (1-\log (16))) \int \frac {x^2}{64 x (1-\log (16))-32 x^2 (1-\log (16))+4 x^3 (1-\log (16))+e^{2 x} \log (16)} \, dx+(192 (1-\log (16))) \int \frac {x}{-64 x (1-\log (16))+32 x^2 (1-\log (16))-4 x^3 (1-\log (16))-e^{2 x} \log (16)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 52, normalized size = 2.17 \begin {gather*} -2 \log (4-x)+\log \left (-64 x+32 x^2-4 x^3-e^{2 x} \log (16)+64 x \log (16)-32 x^2 \log (16)+4 x^3 \log (16)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 43, normalized size = 1.79 \begin {gather*} \log \left (x^{3} - 8 \, x^{2} - 4 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} \log \relax (2) + e^{\left (2 \, x\right )} \log \relax (2) + 16 \, x\right ) - 2 \, \log \left (x - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 46, normalized size = 1.92 \begin {gather*} \log \left (-4 \, x^{3} \log \relax (2) + x^{3} + 32 \, x^{2} \log \relax (2) - 8 \, x^{2} - 64 \, x \log \relax (2) + e^{\left (2 \, x\right )} \log \relax (2) + 16 \, x\right ) - 2 \, \log \left (x - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 47, normalized size = 1.96
method | result | size |
risch | \(-2 \ln \left (x -4\right )+\ln \left ({\mathrm e}^{2 x}-\frac {x \left (4 x^{2} \ln \relax (2)-32 x \ln \relax (2)-x^{2}+64 \ln \relax (2)+8 x -16\right )}{\ln \relax (2)}\right )\) | \(47\) |
norman | \(-2 \ln \left (x -4\right )+\ln \left (4 x^{3} \ln \relax (2)-32 x^{2} \ln \relax (2)-\ln \relax (2) {\mathrm e}^{2 x}-x^{3}+64 x \ln \relax (2)+8 x^{2}-16 x \right )\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 53, normalized size = 2.21 \begin {gather*} -2 \, \log \left (x - 4\right ) + \log \left (-\frac {x^{3} {\left (4 \, \log \relax (2) - 1\right )} - 8 \, x^{2} {\left (4 \, \log \relax (2) - 1\right )} + 16 \, x {\left (4 \, \log \relax (2) - 1\right )} - e^{\left (2 \, x\right )} \log \relax (2)}{\log \relax (2)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {192\,x-4\,\ln \relax (2)\,\left (4\,x^3-48\,x^2+192\,x-256\right )-48\,x^2+4\,x^3+4\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)\,\left (2\,x-10\right )-256}{4\,\ln \relax (2)\,\left (-4\,x^4+48\,x^3-192\,x^2+256\,x\right )-256\,x+192\,x^2-48\,x^3+4\,x^4+4\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)\,\left (x-4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 51, normalized size = 2.12 \begin {gather*} - 2 \log {\left (x - 4 \right )} + \log {\left (\frac {- 4 x^{3} \log {\relax (2 )} + x^{3} - 8 x^{2} + 32 x^{2} \log {\relax (2 )} - 64 x \log {\relax (2 )} + 16 x}{\log {\relax (2 )}} + e^{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________