Optimal. Leaf size=25 \[ x^2 \left (-4 x+\frac {(1+e)^2-x}{1+x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {6, 28, 1811, 1804, 1149} \begin {gather*} -4 x^3+\frac {\left ((1+e)^2 x+1\right ) x}{x^2+1}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 28
Rule 1149
Rule 1804
Rule 1811
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^2 x+(2+4 e) x-15 x^2-25 x^4-12 x^6}{1+2 x^2+x^4} \, dx\\ &=\int \frac {\left (2+4 e+2 e^2\right ) x-15 x^2-25 x^4-12 x^6}{1+2 x^2+x^4} \, dx\\ &=\int \frac {\left (2+4 e+2 e^2\right ) x-15 x^2-25 x^4-12 x^6}{\left (1+x^2\right )^2} \, dx\\ &=\int \frac {x \left (2+4 e+2 e^2-15 x-25 x^3-12 x^5\right )}{\left (1+x^2\right )^2} \, dx\\ &=\frac {x \left (1+(1+e)^2 x\right )}{1+x^2}-\frac {1}{2} \int \frac {2+26 x^2+24 x^4}{1+x^2} \, dx\\ &=\frac {x \left (1+(1+e)^2 x\right )}{1+x^2}-\frac {1}{2} \int \left (2+24 x^2\right ) \, dx\\ &=-x-4 x^3+\frac {x \left (1+(1+e)^2 x\right )}{1+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.12 \begin {gather*} -x-4 x^3+\frac {-1-2 e-e^2+x}{1+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 27, normalized size = 1.08 \begin {gather*} -\frac {4 \, x^{5} + 5 \, x^{3} + e^{2} + 2 \, e + 1}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 28, normalized size = 1.12 \begin {gather*} -4 \, x^{3} - x + \frac {x - e^{2} - 2 \, e - 1}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 29, normalized size = 1.16
method | result | size |
default | \(-4 x^{3}-x +\frac {x -{\mathrm e}^{2}-2 \,{\mathrm e}-1}{x^{2}+1}\) | \(29\) |
risch | \(-4 x^{3}-x +\frac {x -{\mathrm e}^{2}-2 \,{\mathrm e}-1}{x^{2}+1}\) | \(29\) |
gosper | \(-\frac {4 x^{5}+5 x^{3}+{\mathrm e}^{2}+2 \,{\mathrm e}+1}{x^{2}+1}\) | \(30\) |
norman | \(\frac {-4 x^{5}-1-5 x^{3}-{\mathrm e}^{2}-2 \,{\mathrm e}}{x^{2}+1}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 28, normalized size = 1.12 \begin {gather*} -4 \, x^{3} - x + \frac {x - e^{2} - 2 \, e - 1}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 27, normalized size = 1.08 \begin {gather*} -\frac {4\,x^5+5\,x^3+2\,\mathrm {e}+{\mathrm {e}}^2+1}{x^2+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 24, normalized size = 0.96 \begin {gather*} - 4 x^{3} - x - \frac {- x + 1 + 2 e + e^{2}}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________