Optimal. Leaf size=26 \[ \left (\frac {5}{3}\right )^{e x} x \left (\frac {x^4}{2+2 x^2}\right )^{e x} \]
________________________________________________________________________________________
Rubi [F] time = 2.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \left (1+x^2+e \left (4 x+2 x^3\right )+e \left (x+x^3\right ) \log \left (\frac {5 x^4}{6+6 x^2}\right )\right )}{1+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \left (1+4 e x+x^2+2 e x^3\right )}{1+x^2}+5^{e x} e x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \, dx\\ &=e \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \log \left (\frac {5 x^4}{6+6 x^2}\right ) \, dx+\int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \left (1+4 e x+x^2+2 e x^3\right )}{1+x^2} \, dx\\ &=-\left (e \int \frac {2 \left (2+x^2\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{x \left (1+x^2\right )} \, dx\right )+\left (e \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+\int \left (5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}+2\ 5^{e x} e x \left (\frac {x^4}{6+6 x^2}\right )^{e x}+\frac {2\ 5^{e x} e x \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{1+x^2}\right ) \, dx\\ &=(2 e) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+(2 e) \int \frac {5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{1+x^2} \, dx-(2 e) \int \frac {\left (2+x^2\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{x \left (1+x^2\right )} \, dx+\left (e \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+\int 5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx\\ &=(2 e) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+(2 e) \int \left (-\frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{2 (i-x)}+\frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{2 (i+x)}\right ) \, dx-(2 e) \int \left (\frac {2 \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{x}-\frac {x \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{1+x^2}\right ) \, dx+\left (e \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+\int 5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx\\ &=-\left (e \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{i-x} \, dx\right )+e \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{i+x} \, dx+(2 e) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+(2 e) \int \frac {x \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{1+x^2} \, dx-(4 e) \int \frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{x} \, dx+\left (e \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+\int 5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx\\ &=-\left (e \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{i-x} \, dx\right )+e \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{i+x} \, dx+(2 e) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+(2 e) \int \left (-\frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{2 (i-x)}+\frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{2 (i+x)}\right ) \, dx-(4 e) \int \frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{x} \, dx+\left (e \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+\int 5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx\\ &=-\left (e \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{i-x} \, dx\right )+e \int \frac {5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x}}{i+x} \, dx-e \int \frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{i-x} \, dx+e \int \frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{i+x} \, dx+(2 e) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx-(4 e) \int \frac {\int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx}{x} \, dx+\left (e \log \left (\frac {5 x^4}{6+6 x^2}\right )\right ) \int 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx+\int 5^{e x} \left (\frac {x^4}{6+6 x^2}\right )^{e x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.93, size = 24, normalized size = 0.92 \begin {gather*} 5^{e x} x \left (\frac {x^4}{6+6 x^2}\right )^{e x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.14, size = 19, normalized size = 0.73 \begin {gather*} \left (\frac {5 \, x^{4}}{6 \, {\left (x^{2} + 1\right )}}\right )^{x e} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x^{3} + x\right )} e \log \left (\frac {5 \, x^{4}}{6 \, {\left (x^{2} + 1\right )}}\right ) + x^{2} + 2 \, {\left (x^{3} + 2 \, x\right )} e + 1\right )} \left (\frac {5 \, x^{4}}{6 \, {\left (x^{2} + 1\right )}}\right )^{x e}}{x^{2} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 22, normalized size = 0.85
method | result | size |
risch | \(x \left (\frac {5 x^{4}}{6 x^{2}+6}\right )^{x \,{\mathrm e}}\) | \(22\) |
norman | \(x \,{\mathrm e}^{x \,{\mathrm e} \ln \left (\frac {5 x^{4}}{6 x^{2}+6}\right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.79, size = 42, normalized size = 1.62 \begin {gather*} x e^{\left (x e \log \relax (5) - x e \log \relax (3) - x e \log \relax (2) - x e \log \left (x^{2} + 1\right ) + 4 \, x e \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.92, size = 21, normalized size = 0.81 \begin {gather*} x\,{\left (\frac {5\,x^4}{6\,x^2+6}\right )}^{x\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 20, normalized size = 0.77 \begin {gather*} x e^{e x \log {\left (\frac {5 x^{4}}{6 x^{2} + 6} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________