Optimal. Leaf size=21 \[ x+x^2+\frac {x^2 \log (\log (x))}{e^2-x} \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 x-x^2+\left (x^2+2 x^3+e^4 (1+2 x)+e^2 \left (-2 x-4 x^2\right )\right ) \log (x)+\left (2 e^2 x-x^2\right ) \log (x) \log (\log (x))}{\left (e^4-2 e^2 x+x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 x-x^2+\left (x^2+2 x^3+e^4 (1+2 x)+e^2 \left (-2 x-4 x^2\right )\right ) \log (x)+\left (2 e^2 x-x^2\right ) \log (x) \log (\log (x))}{\left (-e^2+x\right )^2 \log (x)} \, dx\\ &=\int \frac {\left (e^2-x\right ) x+\log (x) \left (\left (e^2-x\right )^2 (1+2 x)+\left (2 e^2-x\right ) x \log (\log (x))\right )}{\left (e^2-x\right )^2 \log (x)} \, dx\\ &=\int \left (\frac {x+e^2 \log (x)-\left (1-2 e^2\right ) x \log (x)-2 x^2 \log (x)}{\left (e^2-x\right ) \log (x)}+\frac {\left (2 e^2-x\right ) x \log (\log (x))}{\left (e^2-x\right )^2}\right ) \, dx\\ &=\int \frac {x+e^2 \log (x)-\left (1-2 e^2\right ) x \log (x)-2 x^2 \log (x)}{\left (e^2-x\right ) \log (x)} \, dx+\int \frac {\left (2 e^2-x\right ) x \log (\log (x))}{\left (e^2-x\right )^2} \, dx\\ &=\int \left (1+2 x+\frac {x}{\left (e^2-x\right ) \log (x)}\right ) \, dx+\int \left (-\log (\log (x))+\frac {e^4 \log (\log (x))}{\left (e^2-x\right )^2}\right ) \, dx\\ &=x+x^2+e^4 \int \frac {\log (\log (x))}{\left (e^2-x\right )^2} \, dx+\int \frac {x}{\left (e^2-x\right ) \log (x)} \, dx-\int \log (\log (x)) \, dx\\ &=x+x^2-x \log (\log (x))+e^4 \int \frac {\log (\log (x))}{\left (e^2-x\right )^2} \, dx+\int \frac {1}{\log (x)} \, dx+\int \frac {x}{\left (e^2-x\right ) \log (x)} \, dx\\ &=x+x^2-x \log (\log (x))+\text {li}(x)+e^4 \int \frac {\log (\log (x))}{\left (e^2-x\right )^2} \, dx+\int \frac {x}{\left (e^2-x\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 30, normalized size = 1.43 \begin {gather*} \frac {x \left (-\left (\left (e^2-x\right ) (1+x)\right )-x \log (\log (x))\right )}{-e^2+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 33, normalized size = 1.57 \begin {gather*} \frac {x^{3} - x^{2} \log \left (\log \relax (x)\right ) + x^{2} - {\left (x^{2} + x\right )} e^{2}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 36, normalized size = 1.71 \begin {gather*} \frac {x^{3} - x^{2} e^{2} - x^{2} \log \left (\log \relax (x)\right ) + x^{2} - x e^{2}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 36, normalized size = 1.71
method | result | size |
risch | \(\frac {\left ({\mathrm e}^{4}-{\mathrm e}^{2} x +x^{2}\right ) \ln \left (\ln \relax (x )\right )}{{\mathrm e}^{2}-x}+x^{2}+x -{\mathrm e}^{2} \ln \left (\ln \relax (x )\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 35, normalized size = 1.67 \begin {gather*} \frac {x^{3} - x^{2} {\left (e^{2} - 1\right )} - x^{2} \log \left (\log \relax (x)\right ) - x e^{2}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 21, normalized size = 1.00 \begin {gather*} x+x^2-\frac {x^2\,\ln \left (\ln \relax (x)\right )}{x-{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 34, normalized size = 1.62 \begin {gather*} x^{2} + x - e^{2} \log {\left (\log {\relax (x )} \right )} + \frac {\left (- x^{2} + x e^{2} - e^{4}\right ) \log {\left (\log {\relax (x )} \right )}}{x - e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________