Optimal. Leaf size=27 \[ \frac {\log (x)}{\left (e^{5-x} \left (x+\frac {4 x^2}{3}\right )-\log (5)\right )^5} \]
________________________________________________________________________________________
Rubi [F] time = 4.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {243 \left (e^{5-x} \left (3 x+4 x^2\right )-3 \log (5)+e^{5-x} \left (-15 x-25 x^2+20 x^3\right ) \log (x)\right )}{\left (e^{5-x} \left (3 x+4 x^2\right )-3 \log (5)\right )^5 \left (e^{5-x} \left (3 x^2+4 x^3\right )-3 x \log (5)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=243 \int \frac {e^{5-x} \left (3 x+4 x^2\right )-3 \log (5)+e^{5-x} \left (-15 x-25 x^2+20 x^3\right ) \log (x)}{\left (e^{5-x} \left (3 x+4 x^2\right )-3 \log (5)\right )^5 \left (e^{5-x} \left (3 x^2+4 x^3\right )-3 x \log (5)\right )} \, dx\\ &=243 \int \frac {e^{5 x} \left (e^5 x (3+4 x)-3 e^x \log (5)+5 e^5 x \left (-3-5 x+4 x^2\right ) \log (x)\right )}{x \left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx\\ &=243 \int \left (\frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5}+\frac {5 e^{5+5 x} \left (-3-5 x+4 x^2\right ) \log (x)}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6}\right ) \, dx\\ &=243 \int \frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5} \, dx+1215 \int \frac {e^{5+5 x} \left (-3-5 x+4 x^2\right ) \log (x)}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx\\ &=243 \int \frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5} \, dx-1215 \int \frac {-3 \int \frac {e^{5+5 x}}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx-5 \int \frac {e^{5+5 x} x}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx+4 \int \frac {e^{5+5 x} x^2}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx-(3645 \log (x)) \int \frac {e^{5+5 x}}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx+(4860 \log (x)) \int \frac {e^{5+5 x} x^2}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx-(6075 \log (x)) \int \frac {e^{5+5 x} x}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx\\ &=243 \int \frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5} \, dx-1215 \int \left (\frac {-3 \int \frac {e^{5+5 x}}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx-5 \int \frac {e^{5+5 x} x}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x}+\frac {4 \int \frac {e^{5+5 x} x^2}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x}\right ) \, dx-(3645 \log (x)) \int \frac {e^{5+5 x}}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx+(4860 \log (x)) \int \frac {e^{5+5 x} x^2}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx-(6075 \log (x)) \int \frac {e^{5+5 x} x}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx\\ &=243 \int \frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5} \, dx-1215 \int \frac {-3 \int \frac {e^{5+5 x}}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx-5 \int \frac {e^{5+5 x} x}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx-4860 \int \frac {\int \frac {e^{5+5 x} x^2}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx-(3645 \log (x)) \int \frac {e^{5+5 x}}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx+(4860 \log (x)) \int \frac {e^{5+5 x} x^2}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx-(6075 \log (x)) \int \frac {e^{5+5 x} x}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx\\ &=243 \int \frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5} \, dx-1215 \int \left (-\frac {3 \int \frac {e^{5+5 x}}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x}-\frac {5 \int \frac {e^{5+5 x} x}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x}\right ) \, dx-4860 \int \frac {\int \frac {e^{5+5 x} x^2}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx-(3645 \log (x)) \int \frac {e^{5+5 x}}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx+(4860 \log (x)) \int \frac {e^{5+5 x} x^2}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx-(6075 \log (x)) \int \frac {e^{5+5 x} x}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx\\ &=243 \int \frac {e^{5 x}}{x \left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^5} \, dx+3645 \int \frac {\int \frac {e^{5+5 x}}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx-4860 \int \frac {\int \frac {e^{5+5 x} x^2}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx+6075 \int \frac {\int \frac {e^{5+5 x} x}{\left (e^5 x (3+4 x)-3 e^x \log (5)\right )^6} \, dx}{x} \, dx-(3645 \log (x)) \int \frac {e^{5+5 x}}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx+(4860 \log (x)) \int \frac {e^{5+5 x} x^2}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx-(6075 \log (x)) \int \frac {e^{5+5 x} x}{\left (3 e^5 x+4 e^5 x^2-3 e^x \log (5)\right )^6} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.00, size = 30, normalized size = 1.11 \begin {gather*} -\frac {243 e^{5 x} \log (x)}{\left (-e^5 x (3+4 x)+3 e^x \log (5)\right )^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.78, size = 169, normalized size = 6.26 \begin {gather*} \frac {243 \, \log \relax (x)}{405 \, {\left (4 \, x^{2} + 3 \, x\right )} e^{\left (-x + 5\right )} \log \relax (5)^{4} - 270 \, {\left (16 \, x^{4} + 24 \, x^{3} + 9 \, x^{2}\right )} e^{\left (-2 \, x + 10\right )} \log \relax (5)^{3} - 243 \, \log \relax (5)^{5} + 90 \, {\left (64 \, x^{6} + 144 \, x^{5} + 108 \, x^{4} + 27 \, x^{3}\right )} e^{\left (-3 \, x + 15\right )} \log \relax (5)^{2} - 15 \, {\left (256 \, x^{8} + 768 \, x^{7} + 864 \, x^{6} + 432 \, x^{5} + 81 \, x^{4}\right )} e^{\left (-4 \, x + 20\right )} \log \relax (5) + {\left (1024 \, x^{10} + 3840 \, x^{9} + 5760 \, x^{8} + 4320 \, x^{7} + 1620 \, x^{6} + 243 \, x^{5}\right )} e^{\left (-5 \, x + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.00, size = 277, normalized size = 10.26 \begin {gather*} \frac {243 \, \log \relax (x)}{1024 \, x^{10} e^{\left (-5 \, x + 25\right )} + 3840 \, x^{9} e^{\left (-5 \, x + 25\right )} - 3840 \, x^{8} e^{\left (-4 \, x + 20\right )} \log \relax (5) + 5760 \, x^{8} e^{\left (-5 \, x + 25\right )} - 11520 \, x^{7} e^{\left (-4 \, x + 20\right )} \log \relax (5) + 5760 \, x^{6} e^{\left (-3 \, x + 15\right )} \log \relax (5)^{2} + 4320 \, x^{7} e^{\left (-5 \, x + 25\right )} - 12960 \, x^{6} e^{\left (-4 \, x + 20\right )} \log \relax (5) + 12960 \, x^{5} e^{\left (-3 \, x + 15\right )} \log \relax (5)^{2} - 4320 \, x^{4} e^{\left (-2 \, x + 10\right )} \log \relax (5)^{3} + 1620 \, x^{6} e^{\left (-5 \, x + 25\right )} - 6480 \, x^{5} e^{\left (-4 \, x + 20\right )} \log \relax (5) + 9720 \, x^{4} e^{\left (-3 \, x + 15\right )} \log \relax (5)^{2} - 6480 \, x^{3} e^{\left (-2 \, x + 10\right )} \log \relax (5)^{3} + 1620 \, x^{2} e^{\left (-x + 5\right )} \log \relax (5)^{4} + 243 \, x^{5} e^{\left (-5 \, x + 25\right )} - 1215 \, x^{4} e^{\left (-4 \, x + 20\right )} \log \relax (5) + 2430 \, x^{3} e^{\left (-3 \, x + 15\right )} \log \relax (5)^{2} - 2430 \, x^{2} e^{\left (-2 \, x + 10\right )} \log \relax (5)^{3} + 1215 \, x e^{\left (-x + 5\right )} \log \relax (5)^{4} - 243 \, \log \relax (5)^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 32, normalized size = 1.19
method | result | size |
risch | \(-\frac {243 \ln \relax (x )}{\left (-4 \,{\mathrm e}^{5-x} x^{2}-3 x \,{\mathrm e}^{5-x}+3 \ln \relax (5)\right )^{5}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.66, size = 490, normalized size = 18.15 \begin {gather*} \frac {405 \, {\left (4 \, x^{2} e^{5} \log \relax (5)^{4} + 3 \, x e^{5} \log \relax (5)^{4}\right )} e^{\left (4 \, x\right )} \log \relax (x) - 270 \, {\left (16 \, x^{4} e^{10} \log \relax (5)^{3} + 24 \, x^{3} e^{10} \log \relax (5)^{3} + 9 \, x^{2} e^{10} \log \relax (5)^{3}\right )} e^{\left (3 \, x\right )} \log \relax (x) + 90 \, {\left (64 \, x^{6} e^{15} \log \relax (5)^{2} + 144 \, x^{5} e^{15} \log \relax (5)^{2} + 108 \, x^{4} e^{15} \log \relax (5)^{2} + 27 \, x^{3} e^{15} \log \relax (5)^{2}\right )} e^{\left (2 \, x\right )} \log \relax (x) - 15 \, {\left (256 \, x^{8} e^{20} \log \relax (5) + 768 \, x^{7} e^{20} \log \relax (5) + 864 \, x^{6} e^{20} \log \relax (5) + 432 \, x^{5} e^{20} \log \relax (5) + 81 \, x^{4} e^{20} \log \relax (5)\right )} e^{x} \log \relax (x) + {\left (1024 \, x^{10} e^{25} + 3840 \, x^{9} e^{25} + 5760 \, x^{8} e^{25} + 4320 \, x^{7} e^{25} + 1620 \, x^{6} e^{25} + 243 \, x^{5} e^{25}\right )} \log \relax (x)}{1024 \, x^{10} e^{25} \log \relax (5)^{5} + 3840 \, x^{9} e^{25} \log \relax (5)^{5} + 5760 \, x^{8} e^{25} \log \relax (5)^{5} + 4320 \, x^{7} e^{25} \log \relax (5)^{5} + 1620 \, x^{6} e^{25} \log \relax (5)^{5} + 243 \, x^{5} e^{25} \log \relax (5)^{5} - 243 \, e^{\left (5 \, x\right )} \log \relax (5)^{10} + 405 \, {\left (4 \, x^{2} e^{5} \log \relax (5)^{9} + 3 \, x e^{5} \log \relax (5)^{9}\right )} e^{\left (4 \, x\right )} - 270 \, {\left (16 \, x^{4} e^{10} \log \relax (5)^{8} + 24 \, x^{3} e^{10} \log \relax (5)^{8} + 9 \, x^{2} e^{10} \log \relax (5)^{8}\right )} e^{\left (3 \, x\right )} + 90 \, {\left (64 \, x^{6} e^{15} \log \relax (5)^{7} + 144 \, x^{5} e^{15} \log \relax (5)^{7} + 108 \, x^{4} e^{15} \log \relax (5)^{7} + 27 \, x^{3} e^{15} \log \relax (5)^{7}\right )} e^{\left (2 \, x\right )} - 15 \, {\left (256 \, x^{8} e^{20} \log \relax (5)^{6} + 768 \, x^{7} e^{20} \log \relax (5)^{6} + 864 \, x^{6} e^{20} \log \relax (5)^{6} + 432 \, x^{5} e^{20} \log \relax (5)^{6} + 81 \, x^{4} e^{20} \log \relax (5)^{6}\right )} e^{x}} - \frac {\log \relax (x)}{\log \relax (5)^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {3\,\ln \relax (5)-{\mathrm {e}}^{5-x}\,\left (4\,x^2+3\,x\right )+{\mathrm {e}}^{5-x}\,\ln \relax (x)\,\left (-20\,x^3+25\,x^2+15\,x\right )}{{\left (\ln \relax (5)-\frac {{\mathrm {e}}^{5-x}\,\left (4\,x^2+3\,x\right )}{3}\right )}^5\,\left (3\,x\,\ln \relax (5)-{\mathrm {e}}^{5-x}\,\left (4\,x^3+3\,x^2\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.64, size = 209, normalized size = 7.74 \begin {gather*} \frac {243 \log {\relax (x )}}{\left (1620 x^{2} \log {\relax (5 )}^{4} + 1215 x \log {\relax (5 )}^{4}\right ) e^{5 - x} + \left (- 4320 x^{4} \log {\relax (5 )}^{3} - 6480 x^{3} \log {\relax (5 )}^{3} - 2430 x^{2} \log {\relax (5 )}^{3}\right ) e^{10 - 2 x} + \left (5760 x^{6} \log {\relax (5 )}^{2} + 12960 x^{5} \log {\relax (5 )}^{2} + 9720 x^{4} \log {\relax (5 )}^{2} + 2430 x^{3} \log {\relax (5 )}^{2}\right ) e^{15 - 3 x} + \left (- 3840 x^{8} \log {\relax (5 )} - 11520 x^{7} \log {\relax (5 )} - 12960 x^{6} \log {\relax (5 )} - 6480 x^{5} \log {\relax (5 )} - 1215 x^{4} \log {\relax (5 )}\right ) e^{20 - 4 x} + \left (1024 x^{10} + 3840 x^{9} + 5760 x^{8} + 4320 x^{7} + 1620 x^{6} + 243 x^{5}\right ) e^{25 - 5 x} - 243 \log {\relax (5 )}^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________