Optimal. Leaf size=23 \[ \frac {2}{5} e^{-3-x} \left (-e^{-3+e}+\log ^2(x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 29, normalized size of antiderivative = 1.26, number of steps used = 2, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {12, 2288} \begin {gather*} -\frac {2 e^{-x-3} \left (e^{e-3} x-x \log ^2(x)\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-3-x} \left (2 e^{-3+e} x+4 \log (x)-2 x \log ^2(x)\right )}{x} \, dx\\ &=-\frac {2 e^{-3-x} \left (e^{-3+e} x-x \log ^2(x)\right )}{5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.22 \begin {gather*} \frac {1}{5} \left (-2 e^{-6+e-x}+2 e^{-3-x} \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 23, normalized size = 1.00 \begin {gather*} \frac {2}{5} \, e^{\left (-x - 3\right )} \log \relax (x)^{2} - \frac {2}{5} \, e^{\left (-x + e - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 24, normalized size = 1.04 \begin {gather*} \frac {2}{5} \, {\left (e^{\left (-x\right )} \log \relax (x)^{2} - e^{\left (-x + e - 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.04
method | result | size |
risch | \(\frac {2 \ln \relax (x )^{2} {\mathrm e}^{-3-x}}{5}-\frac {2 \,{\mathrm e}^{{\mathrm e}-6-x}}{5}\) | \(24\) |
norman | \(\left (\frac {2 \,{\mathrm e}^{-3} \ln \relax (x )^{2}}{5}-\frac {2 \left ({\mathrm e}^{-3}\right )^{2} {\mathrm e}^{{\mathrm e}}}{5}\right ) {\mathrm e}^{-x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 23, normalized size = 1.00 \begin {gather*} \frac {2}{5} \, e^{\left (-x - 3\right )} \log \relax (x)^{2} - \frac {2}{5} \, e^{\left (-x + e - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.82, size = 22, normalized size = 0.96 \begin {gather*} -{\mathrm {e}}^{-x-6}\,\left (\frac {2\,{\mathrm {e}}^{\mathrm {e}}}{5}-\frac {2\,{\mathrm {e}}^3\,{\ln \relax (x)}^2}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 24, normalized size = 1.04 \begin {gather*} \frac {\left (2 e^{3} \log {\relax (x )}^{2} - 2 e^{e}\right ) e^{- x}}{5 e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________