Optimal. Leaf size=37 \[ \frac {x}{-x+x^2+\frac {10 x}{-5+x-\frac {x}{e^{\frac {5}{3 x}+x}+x}}} \]
________________________________________________________________________________________
Rubi [F] time = 13.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-78 x^3+36 x^4-3 x^5+e^{\frac {2 \left (5+3 x^2\right )}{3 x}} \left (-45 x+30 x^2-3 x^3\right )+e^{\frac {5+3 x^2}{3 x}} \left (-50-30 x-90 x^2+66 x^3-6 x^4\right )}{768 x^3-672 x^4+243 x^5-42 x^6+3 x^7+e^{\frac {2 \left (5+3 x^2\right )}{3 x}} \left (675 x-540 x^2+198 x^3-36 x^4+3 x^5\right )+e^{\frac {5+3 x^2}{3 x}} \left (1440 x^2-1206 x^3+438 x^4-78 x^5+6 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x^3 \left (26-12 x+x^2\right )-3 e^{\frac {10}{3 x}+2 x} x \left (15-10 x+x^2\right )-e^{\frac {5}{3 x}+x} \left (50+30 x+90 x^2-66 x^3+6 x^4\right )}{3 x \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {-3 x^3 \left (26-12 x+x^2\right )-3 e^{\frac {10}{3 x}+2 x} x \left (15-10 x+x^2\right )-e^{\frac {5}{3 x}+x} \left (50+30 x+90 x^2-66 x^3+6 x^4\right )}{x \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {3 \left (15-10 x+x^2\right )}{\left (15-6 x+x^2\right )^2}+\frac {10 \left (-75-15 x+22 x^2-9 x^3+3 x^4\right )}{x \left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}-\frac {10 \left (-1200+285 x+985 x^2-751 x^3+250 x^4-42 x^5+3 x^6\right )}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}\right ) \, dx\\ &=\frac {10}{3} \int \frac {-75-15 x+22 x^2-9 x^3+3 x^4}{x \left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx-\frac {10}{3} \int \frac {-1200+285 x+985 x^2-751 x^3+250 x^4-42 x^5+3 x^6}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx-\int \frac {15-10 x+x^2}{\left (15-6 x+x^2\right )^2} \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {\int 0 \, dx}{24}-\frac {10}{3} \int \frac {-1200+285 x+985 x^2-751 x^3+250 x^4-42 x^5+3 x^6}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {10}{3} \int \frac {-75-15 x+22 x^2-9 x^3+3 x^4}{x \left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {10}{3} \int \left (-\frac {20}{\left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}-\frac {6 x}{\left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}+\frac {3 x^2}{\left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}+\frac {180 x}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}-\frac {55 (-4+x)}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}\right ) \, dx+\frac {10}{3} \int \left (-\frac {1}{3 x \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}+\frac {36 (-5+x)}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}+\frac {21+10 x}{3 \left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}\right ) \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {10}{9} \int \frac {1}{x \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx+\frac {10}{9} \int \frac {21+10 x}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx-10 \int \frac {x^2}{\left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx+20 \int \frac {x}{\left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx+\frac {200}{3} \int \frac {1}{\left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx+120 \int \frac {-5+x}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx+\frac {550}{3} \int \frac {-4+x}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx-600 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {10}{9} \int \frac {1}{x \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx+\frac {10}{9} \int \frac {21+10 x}{\left (15-6 x+x^2\right ) \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx-10 \int \frac {x^2}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+20 \int \frac {x}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {200}{3} \int \frac {1}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+120 \int \frac {-5+x}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx+\frac {550}{3} \int \frac {-4+x}{\left (15-6 x+x^2\right ) \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx-600 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {10}{9} \int \frac {1}{x \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx+\frac {10}{9} \int \left (\frac {21}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}+\frac {10 x}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}\right ) \, dx-10 \int \frac {x^2}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+20 \int \frac {x}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {200}{3} \int \frac {1}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+120 \int \left (-\frac {5}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}+\frac {x}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )}\right ) \, dx+\frac {550}{3} \int \left (-\frac {4}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}+\frac {x}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2}\right ) \, dx-600 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {10}{9} \int \frac {1}{x \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx-10 \int \frac {x^2}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {100}{9} \int \frac {x}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx+20 \int \frac {x}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {70}{3} \int \frac {1}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx+\frac {200}{3} \int \frac {1}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+120 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx+\frac {550}{3} \int \frac {x}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx-600 \int \frac {1}{\left (15-6 x+x^2\right )^2 \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )} \, dx-600 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx-\frac {2200}{3} \int \frac {1}{\left (15-6 x+x^2\right ) \left (15 e^{\frac {5}{3 x}+x}+16 x-6 e^{\frac {5}{3 x}+x} x-7 x^2+e^{\frac {5}{3 x}+x} x^2+x^3\right )^2} \, dx\\ &=-\frac {5-x}{15-6 x+x^2}-\frac {10}{9} \int \frac {1}{x \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx-10 \int \frac {x^2}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {100}{9} \int \frac {x}{\left (15-6 x+x^2\right ) \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx+20 \int \frac {x}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+\frac {70}{3} \int \frac {1}{\left (15-6 x+x^2\right ) \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx+\frac {200}{3} \int \frac {1}{\left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx+120 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx+\frac {550}{3} \int \frac {x}{\left (15-6 x+x^2\right ) \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx-600 \int \frac {x}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx-600 \int \frac {1}{\left (15-6 x+x^2\right )^2 \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )} \, dx-\frac {2200}{3} \int \frac {1}{\left (15-6 x+x^2\right ) \left (x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 55, normalized size = 1.49 \begin {gather*} \frac {e^{\frac {5}{3 x}+x} (-5+x)+(-6+x) x}{x \left (16-7 x+x^2\right )+e^{\frac {5}{3 x}+x} \left (15-6 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 61, normalized size = 1.65 \begin {gather*} \frac {x^{2} + {\left (x - 5\right )} e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )} - 6 \, x}{x^{3} - 7 \, x^{2} + {\left (x^{2} - 6 \, x + 15\right )} e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )} + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.73, size = 100, normalized size = 2.70 \begin {gather*} \frac {x^{2} + x e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )} - 6 \, x - 5 \, e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )}}{x^{3} + x^{2} e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )} - 7 \, x^{2} - 6 \, x e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )} + 16 \, x + 15 \, e^{\left (\frac {3 \, x^{2} + 5}{3 \, x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 91, normalized size = 2.46
method | result | size |
risch | \(\frac {x -5}{x^{2}-6 x +15}-\frac {10 x}{\left (x^{2}-6 x +15\right ) \left ({\mathrm e}^{\frac {3 x^{2}+5}{3 x}} x^{2}+x^{3}-6 \,{\mathrm e}^{\frac {3 x^{2}+5}{3 x}} x -7 x^{2}+15 \,{\mathrm e}^{\frac {3 x^{2}+5}{3 x}}+16 x \right )}\) | \(91\) |
norman | \(\frac {-6 x -5 \,{\mathrm e}^{\frac {3 x^{2}+5}{3 x}}+x^{2}+{\mathrm e}^{\frac {3 x^{2}+5}{3 x}} x}{{\mathrm e}^{\frac {3 x^{2}+5}{3 x}} x^{2}+x^{3}-6 \,{\mathrm e}^{\frac {3 x^{2}+5}{3 x}} x -7 x^{2}+15 \,{\mathrm e}^{\frac {3 x^{2}+5}{3 x}}+16 x}\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 51, normalized size = 1.38 \begin {gather*} \frac {x^{2} + {\left (x - 5\right )} e^{\left (x + \frac {5}{3 \, x}\right )} - 6 \, x}{x^{3} - 7 \, x^{2} + {\left (x^{2} - 6 \, x + 15\right )} e^{\left (x + \frac {5}{3 \, x}\right )} + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {x^2+\frac {5}{3}}{x}}\,\left (6\,x^4-66\,x^3+90\,x^2+30\,x+50\right )+{\mathrm {e}}^{\frac {2\,\left (x^2+\frac {5}{3}\right )}{x}}\,\left (3\,x^3-30\,x^2+45\,x\right )+78\,x^3-36\,x^4+3\,x^5}{{\mathrm {e}}^{\frac {2\,\left (x^2+\frac {5}{3}\right )}{x}}\,\left (3\,x^5-36\,x^4+198\,x^3-540\,x^2+675\,x\right )+{\mathrm {e}}^{\frac {x^2+\frac {5}{3}}{x}}\,\left (6\,x^6-78\,x^5+438\,x^4-1206\,x^3+1440\,x^2\right )+768\,x^3-672\,x^4+243\,x^5-42\,x^6+3\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 66, normalized size = 1.78 \begin {gather*} - \frac {10 x}{x^{5} - 13 x^{4} + 73 x^{3} - 201 x^{2} + 240 x + \left (x^{4} - 12 x^{3} + 66 x^{2} - 180 x + 225\right ) e^{\frac {x^{2} + \frac {5}{3}}{x}}} - \frac {5 - x}{x^{2} - 6 x + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________